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/840*

We investigate what conditions cause one to construe an

apparent perpetual motion of the second type if one allows an

intelligent subject to influence a thermodynamic system. By hav-

ing subjects make such measurements, they produce a behavior of

the system which is clearly different from an isolated mechanical

system.	 We show that a type of recall ability can offer

an occasion to a continuous reduction of entropy. This recall is

distinguished in a system in which measurements occur, and would

lead to a contradiction of the second law if the measurements

themselves did not necessarily proceed under entropy production.

At first this entropy production is calculated universally from

the requirement that it represents a complete compensation in the

sense of the second law (Equation 1). Using an apparatus which

is able to implement continuous measurements (under continuous

entropy production), the corresponding amount of entropy is

calculated. We found that it is ,just as large as is necessary

for complete compensation: the actual entropy production on

measurement, therefore, does not have to be larger than that deter-

mined by Equation (1).

* Numbers in margin indicate pagination in original foreign text.
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There is already an historical objection to the general

validity of the second law of thermodynamics which actually

makes a quite disturbing impression. This is the objection

of the Maxwellian Demon which still comes up today in different

forms (and perhaps with some justification, inasmuch as quantita-

tive relationships seem to be hidden behind the precise questions

which have not yet been clarified). The objection is, in its

original formulation one which operates with a demon which

catches the fast molecules and allows the slow ones to pass. One

can refute this by the fact that we humans cannot, in principle,

discover the value of the thermal, varying parameters; but it

cannot be denied that we could measure the value of such oscillat-

ing parameters very well, and could then surely obtain data on the

costs of the warmth by arranging our concepts appropriately to

the result of the measurements. Of course, it remains to bp

decided whether we do not make an error if we do not consider

the interfering subject himself, in the system, along with his

life processes.

Except for this point, it is known today that in an isolated /841

system, in spite of the occurrence of oscillation, no perpetual

motion, second type, can be effective, i.e., no machine using
i

automatic heat of lowest temperature of continuous, finite

capability, can be effective. This would be a machine whose

effectiveness would have the result, even over long periods of time,

that a weight would be raised at the cost of heat in a heat

reservoir.	 i

Exp ressed in another way, one can also say that, if we want

to use the occurrences of variations in order -co get data on

the costs of the heat, we are in the same position as in a game

of chance at which we can win certain amounts from time to time,

but at which the expected value (mathematical hope) of winnings is

zero or negative. The same is true for a system which is not
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isolated, but at which the external interferences are highly

periodic, as by machines moving periodically. We consider this

statement as proven [1] and will only consider the difficulties

which occur when subjects interfere in the system, and to try

to recognize the quantitative relationships occurring in this.

i

Smoluchowski writes [2]: "As far as our present knowledge 	
^p

reaches, there is no automatic, continuously effective perpetual 	 {

motion in spite of molecular vibrations, but such an apparatus could

function regularly if it were operated by intelligent subjects

in a suitable manner. ...
t

"Thus, a perpetual motion is possible if one considers the

experimenting person, according to the usual methods of physics,

as a kind of "Deus ex machina" which is continuously and exactly

informed of the instantaneous condition of nature. This Deus

ex machina" can set in motion or interrupt the macroscopic

natural processes at any moment. Thus, he does not at all need

to possess, like the Maxwellian demon does, the ability to

catch individual molecules, but would be completely different in

the above points from real persons. The production of any kind

of physical effect, by operation of the sensor or motor nervous

system, is always connected with depreciation of energy, except

that its entire existence is connected to a continuous dissipa-

tion of same.

"It is doubtful that real persons could produce continuous	 /842

or at least uniform, work at the cost of heat at the lowest

temperature, considering these circumstances, even though our

lack of knowledge of life processes precludes a definitive

answer. :however, the questions ,just touched u?on lead beyond

actual physics ...."

3
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It seems to us that the lack of knowledge of life processes

should not be disturbing'for recognizing that with which our work

is concerned. Because we may be certain that one can replace the

subjects (inasmuch as concerns their interference in a thermody-

namic system) by any device whose "life processes" can be followed.

Thus, one could determine whether a compensation actually occurs

for the entropy reduction which is produced by the interference

of the device in the system.

At first, we want to try to recognize what causes the

entropy reduction on interference of intelligent subjects in a

thermodynamic system. We shall see that it depends on a coupling

of a special type between various parameters of the system. We

shall observe an especially simple type of this threatening

coupling. We will shortly speak of a "measurement" whenever we

succeed in connecting the value of one parameter "y" (e.g., the

distance coordinate of the pointer of a measuring instrument) at 	 f

one instant, with the momentary value of a varying parameter "x"

of the system. Thus, one can draw conclusions on the value of

" x " at the moment of measurement from the value of "y".

Then, "x" and "y" are separated again after the measurement so

that "x" can change, whereas "y" retains its value a little

while. Such measurements are no harmless interference; a system

in which such measurements occur indicates a type of remembrance

ability, in the sense that one can recognize what kind of value

a different parameter, Y', had at an earlier time by the condi-

tion parameter "y". And we'shall see that such ability of

recollection would damage the second law if the process of

measurement would take place without compensation. We will then

see that the second law is not so greatly threatened by this

entropy reduction as one migh t; originally think. We recognize

that the entropy reduction caused by the interference would be

completely compensated if the implementation of such measurements

were universally dependent on an entropy production of k • log 2,

4



for example. It would then be possible to prescribe a somewhat

general entropy law which is based universally on all measurements.

In conclusion, a very simple apparatus (not arbitrarily chosen) is

under consideration. This device is in the position to undertake

continuous "measurements", and we may easily follow its "life

processes". By direct calculation, one actually finds a con-

tinuous entropy production in the amount which is required by the

mentioned, general entropy law which is derived from the validity

of the second law.

The first example, which we consider typical, is the following,:

a standing hollow cylinder which is closed top and bottom, can be

divided into two unequal halves of volumns V 1 and V2 by pushing in

a solid disc from the side. This disc forms a 'piston" which can

be pushed up and down inside the cylinder. An infinite heat

reservoir of some temperature T insures that a gas present in

the cylinder performs an isothermic expansion on movement of the

piston. Now, this gas should consist of one single molecule which

roams around in the whole cylinder according to its thermal

motion, as long as the piston is not shoved into the cylinder.

Let's now imagine a subject who shoved the piston into the

cylinder at some point in time, and simultaneously determines

(somenow) wnether the molecule is in the upper or lower half of the

cylinder, in volume V 1 or V2 . If he finds that the former is the

case, then he pushes the piston slowly downward, until the base

of the cylinder is reached. Durin g; this slow pushing of the pis-

ton, the molecule naturally remains above the piston at all times,

but does not remain in the top half of the cylinder, but rather

strikes the top of the moving piston many times. In this manner,

the molecule does a certain amount of work on the piston. This

is the work which corresponds to an isothermic expansion of an

ideal gas consiating of one molecule, performed from volume V. on

volume V1 + V2 . After a time, when the piston has reached the

5
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base of the container, the entire volume V 1 ♦ V2 is again avail-	 /844

able to the molecule, and the piston is then pulled out. The pro-

cess can be repeated as often as desired, where the subject pushes

the piston up or down depending on whether the molecule is in the

upper or lower half. That is, the subject is so coupled to a

weight which is to be raised by a mechanical transfer of force,

that the weight is pushed up by the piston. In this manner, the

potential energy of the weight certainly increases continuously.

(The transfer of force to the weight is so represented, that the

force transferred from the weight to the piston, at any position

of the piston balances the average pressure of the gas). It is

clear that Lnntinuous work can be obtained at the cost of heat,

inasmuch as the life processes of the interfering subject are

not considered 1;. the calculation.

In order to recognize what the subject actually performs for

the system here, one should imagine that the motion of the piston

is done mechanically and that the whole activity of the subject

is exhausted in determining the height of the molecule and in

adjusting a lever left or right (which guides the motion of the

piston) according to which motion of the piston, upwards or

downwards, is required by the position of the molecule. That is,

the interference of the subject consists in the coupling of two

position, coordinates, namely an "x" coordinate which determined

the altitude of the molecule, with another coordinate "y", which

defines the position of the lever and which is thus decisive in

giving the piston an up or down motion. 	 One should imagine the

mass of the piston to be large and its speed to be sufficiently

high so that the.thermal agitation, which the piston has at the

operating temperature, can be neglected.

We shall differentiate two time periods in the processes of

the typical example under consideration here, namely:

6	 ORIGINAL PAGE IS
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1. #.,.The time period of measurement, at which the piston is

Just shoved into the middle of the cylinder and the molecule is

shut into either the upper or lower half. Thus, we limit the

x-coordinate to the interval x >0 or x <0 by choosing an ap pro-

priate coordinate origin.

2. The time period of utilization of the measurement, during

which the up or down motion of the piston is accomplished, the

"time period of entropy reduction". During this period, the x-

coordinate of the molecule is by no means limited to the

original x >0 or x <0.	 If the molecule, at the time of	 /845

measurement is in the upper half of the cylinder so that x> 0,

then it must strike the piston which is now moving down if it is

to contribute to this work. That is, the x-coordinate of the

molecule must enter the interval x <0. However, the lever will

retain its setting corresponding to the downward motion during

the entire time period. If this right position of the lever is

determined by y = 1 (and the corresponding left-position y = -1),

we see that the measurement of the position x > 0 is paired with

y = 1 during the time interval. We also note that later, y = 1

remains, even after x has passed into the other interval x < 0.

One sees that on utilization of the measurement, the coupling of

the two parameters, x and y, is lost.

We will speak quite generally about this, that a parameter

" y" measures the value of a parameter "x", which is varying by a

probabili'y law, wherever the value of "y" changes to the value of

the parameter "x" at a definite point in time. Taking this

measurement is the underlying principle of entropy reduction by

interference by intelligent subjects.

It is now suggested to assume that taking the measurement is

principally connected with a q uite certain average entropy pro-

duction. By this, agreement with the second law is again

()IMLNAL PAGE I,9
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restored. The amount of entropy occurring on measurement may

always be larger, but not smaller. More exactly, two q4antities

of entropy must be differentiated here, the first, S l , is pro-

duced if "y" has the value of 1 on measurement, and the other, S2,

when y - 1. We can not expect to learn anything, generally,

about S 1 or S 2 , individually. But we shall indeed see from the

assumption that the entropy produced by this "measurement" must be

compensated by the utilization of the resultant entropy reduction

of the system (in the sense of the second law), that the quite

general :elation

r	 +e	 s l	 (l)
follows.

From this formula, one sees that we can make one of the

quantities, S 1 , as small as desired, but that the other quantity,

S 2 , becomes correspondingly large. It is also striking that

it is not at all dependent on the size of the interval observed. /846

Of course, one can easily see that it could not possibly be other-

wise.

We can say the converse: as soon as the entropies S 1 and S2

(occurring by the measurement) satisfy inequality (1), we may rest

assured that the attainable entropy reduction is already completely

compensated by the measurement.

Before we go into the proof of inequality (1), we can see

from the observed mechanical example how this all fits together.

For the produced entropys S 1 and S 2 , we write the special formula:

S 1	S2 t k log 2.

8
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This statement obeys inequality (1), and the average value of

measurement-produced entropy is:

S - k log 2

(in this special case, it is naturally independent of the ratio

of frequency w l , w 2 of both occurrences). In the observed example,

one achieves entropy reduction* by isothermic expansion:

— 1 1 — — l: log y, 	 k log - -°- .
V, + V^	 V1 •T t ,

regardless of whether the molecule is encountered in volume

V 1 or V2 when the piston is pushed in. (Entropy reduction

equals the quotient of the amount of heat withdrawn from the heat

reservoir by isothermal expansion, and the temperature of the

respective heat reservoir.) Since in the present case, the fre-

quency w l , w 2 of both occurrences is in the ratio as the volume

V1 , V2 , then the average amount of produced entropy (negative

number) is:

_ W ,	 +W,.(+r,)	 y!- klog y'- -+ V, '
s

 4. 109- 5 —.

One sees that actually

V L k log V' ,+	 ' k log 11 + k log 2 a 0
V,+ V,	 V,+Is V.+ V,	 V,+V,

and thus S + s ' 0.

Thus, in the present special case, there would be a full	 /847

compensation for the attained e-..ropy reduction on utilization of

the measurement.

Let us now observe other special examples and try to derive

formula (1) and define the above relationships with the aid of a

general observation. Let us now think of the entire system as

• The entropy produced is designated e l , a2.

9
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divided into several samples, which are all enclosed in a

common box. In this system, "x" is subject	 some kind of

thermal oscillations, and can be measured by "y" in the manner

described. Each individual section can be moved independently,

so that the individual systems can be considered as the

molecules of an ideal gas which wander around in the common

box as a consequence of thermal agitation. These molecules exert

a pressure on the walls of the box according to the temperature.

We now consider two of these molecules as chemically different, and

separable by a semi-permeable membrane in case the x-coordinate

of one molecule is in a prominent interval, and is outside of the

interval for the other molecule. We will likewise consider them

chemically different if they differ only by having values of the

y-coordinate of 1 and -1, respectively.

Let us shape the "box" as a hollow cylinder, in which four

pistons are placed (see Figure 1). "A" and "A'" are fixed, the

two others, B and B' are moveable so that the distance BB' is

always equal to the distance AA', as is indicated in tho figure

by the brackets. A', the base, and B, the top of the whole con-

tainer, are impenetrable by all molecules, however, A and B'

are semi-permeable; A is only permeable for those molecules

for which the parameter "X" lies in the prominent interval x1x2,

B' is only permeable for the others.

At first, piston B is at A,

and thus B' is at A' and all
e

molecules are located in the	 -'--

space between. For a certain

	 LJfraction of the molecules, "x" 	 °

is found in the prominent inter-

val. The probability of this for 	 Figure 1.

any given molecule is designated

w l , the probability of "x" being outside the interval is w2.

10
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Then:

w1 + w 2 = 1
	

/848

The distribution of the y- parameter may be in any ratio of the

two values 1 and -1, but is independent of the x-values in any	 !

case. We now imagine an interference by a subject, by which

''y" receives the value 1 in all molecules, "x" falls in the promi-

nent interval at the time concerned, and corresponds to the	 j

value of -1 in the opposite case. If, as a consequence of thermal	 I

variation, the parameter "x" leaves the prominent interval for any

molecule, or, as we can express it here, if the molecule suffers

a monomolecular chemical reaction with respect to "x", then

the parameter "y" retains its value of 1 at first so that the

molecule 1:- able to "remember" during the entire later process

that 'x" .,rigirally fell in the prominent interval. The mono-

molecular chemical reaction causes the molecule, wr,icn was per-

meable to piston A, to become impermeable. 4e shall see shortly
1

what role this "remembrance" can play. We now push in the pistons

as described above so that we separate the two k17 , ds of molecules

from eacn other without doing any work. Two containers are then

present, of these, one gets one f^action, the other gets the

other fraction. Now, each fraction alone takes up the sam vr)lur-e as

the mixture did before. in one of these containers, an eau'.11hrium

distribution with respect to the two "modifications in 'x'", is not

present. The quantity ratio of the two modifications ;fractions)

is Still w 1 :w2' If we let this equilibrium distribution occur	 j

by itself at constant volume and temperature in each vessel, then

the entropy of the system definitely increases during the process.

Because the total heat production is 0, since the ratio of both

"modifications in x", w
1
 :W

2 
ioes not change. 1 we lead the	 E

adjustment of the equilibrium distribution ir. both containers by

{	 reversible paths, then the entropy of the surroundings would

decrease by the sane amount. Thus, the entropy increases by a

negative amount., and the value of entropy increase per molecule

is:

.,!, i',1G1; IS	 11
-. CUOR QUALI'Ty



i = k (wI log 0 1 + '0, log w.}	 (2)

/849

(The entropy constants which we have assigned to the two "modifi-

cations in 'x " do not explicitly occur here, because the process

which belongs to one or the other modification leaves the total

number of molecules unchanged.)

Naturally, we could return the two ga3es to their original

volumes without doing any more work by simply pushing back the

piston, since the volume determined by the piston BB' contains such

molecules whose x-coordinates fall outside of the prominent

interval and for whom piston A is no longer permeable. So we see

that the entropy reduction found (2) does not mean a contradiction

to the second law. So long as we do not use the fact that the

molecules in vessel BB' of coordinate "y" can "remember" that the

x-coordinate of the molecules in this container originally lay in

the prominent interval, then complete compensation is actually

present for the calculated entropy reduction; the partial pressures

in both vessels are now smaller than in the original mixture.

But we can use the fact that all moleraies in vessel BB' have a

y-cco:dinate of 1 and those in the other vessel hav ,_^ a y-coordi-
nate of -1, in order to return all molecules to the original vol-

ume. For this, we merely replace semipermeable wall A by

wall A*, which is semipermeable with respect to "y" and not to

"x", s- that it is permeable fcr molecules with y-coordinate 1,

and impermeable for the others. Conversely, we replace B' by

a piston B'* which is impermeable for molecules with y = -1 and

permeable for the others. Then both vessels can be pushed

together again without expending work. The distribution of

the y-coordinates to 1 and -1 has become statistically independent

of the x-values and, moreover, we can produce the original dis-

tribution to 1 and -1: thus we pass through a complete circular

r

r
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-I process. The only change that we have to register is the

attaine6 entropy reduction of the amount (2),

i = k (WI log w, + W, log w,).

Thus, if we do not want to admit that the second law is

violated, then we must conclude that the interference which	 /850

causes the coupling between "x" and tt y", the measurement of
'IX" by "y", is insolubly connected to the entrop. production.

If a definite path for production of this coupling is given, and

if the necessary amounts of entropy produced are designated S, an
1

S 2 , then the average produced entropy is given by

t0, `, 4- M, so = S.

Here S 1 is the average entropy increase which occurs when "y" has

the value 1, a , .-^ S 2 is that which occurs when "y" has the value

-1. In order for the second law to be consistent, this amount

of entropy must be larger than the entropy reduction s which is

attainable by the evaluation of the measurement according to (2).

Thus
,5+xzo,	

(3)W 1 S, + w, S, + k (tu t log tr, + to, log to,) > 0.

must be valid. This inequality must be true for any values of

w l and w 2 *. Naturally the peripheral condition w l + w 2 = 1 must

be retained. In particular, we are asking for those values of w 

and w 2 for which the expression has a minimum for given S-values.

For this pair of values, w  and w 2 , inequality (3) must still

hold. Under the mentioned peripheral conditions, the minimum

occurs when

`k + log m, = .k + log to,
	 (4)

The increase in entropy can only be dependent on the type of
measurement and its result, and not on how many systems
of one type or another, a re f. , resenc .

13
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if	 i 	 ' 	 II

is true. But then

e	 + e R 5 1.

This can be seen very easily if one introduces the equation

I+ log a, _ + log W S = A

i
Then

W, = e'.# t . W. = t; .e e.	 (5)

If we substitute these values into inequality (3), there results 	 f
i

xei (e F -*-e k)z0.

Thus	 0	 holds.	 But if we substitute the values

for w  and w2 from (5) in the equation w  + w 2 = 1, we obtain:

_t,	 -N
e k + 1 6 = e— J.

And because ^ ?O ,

/851

c t +
	

(6)

is also true. This formula must be generally true if the thermo-

dynamics are not to be violated.

As long as we let the interference be done by intelligent

subjects, a direct check must be excluded. However, we can try

to give simple, specific devices which cause such a coupling,

and observe whether entropy is actually produced and in what

quantity. Not until we have recognized that it depends on a

definite characteristic kind of coupling, a "measurement" will

will be needed to construct some complicated model which signifi-

cantly imitates the interference of the subject. Thus, for the

present, we can be satisfied with the creation of this special

coupling equipped with memory.

14
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In this example, the position coordinates of a moving pointer 	 i

are "measured" by the energy content of a body K. At first, the

pointer will purely mechanically effect that the body K be

,neasured by its energy content, according to the position of the 	 I

pointer with one of two distances, A or B. The pointer works by 	
IIII'

heat so that the body is connected to A as long as the coordinates

determined by the pointer fall in a certain prominent interval
i

"a" of arbitrary length. The opposite holds with B in interval

"b". Both distances are in thermal contact with a heat reservoir

of temperature^T0 up to the moment of "measurement" . At this mo-

ment, distance A is cooled to temperature T A by a periodically

functioning mechanical device. This is done by successive contact

with heat reservoirs of intermediate temperatures in contact with

a heat reservoir of temperature TA . Simultaneously, B is

warmed to temperature T B in the same manner. Then, the distances

are again isolated from the heat reservoirs. 	 /852

We assume that the position of the pointer changes so slowly

that all operations sketched here proceed at one and the same

pointer position. If the position coordinate of the pointer

in the prominent interval fell. then the body would be connected

to interval A during the mentioned operation, and would be conse-

quently cooled to temperature T A . Conversely, the body is now

warmed to temperature T B . Its energy content is thus, according

tc the position of the pointer at the moment of "measurement",

small corresponding to temperature TA or large corresponding to

temperature 'IB . It retains its value even when the pointer

leaves the prominent interval in the course of time. After a

time when the pointer carries out its further oscillations, no

more conclusions can be made on the instantaneous position of

the pointer from the energy content of body K, rather, a sure

conclusi rin on the position of the pointer at the time of measure-

ment. Then the measurement is completed.

15
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The mentioned periodically functioning mechanical device

which makes the interference for us should bring the now thermi-

cally isolated segments A and B into direct contact with heat
	

Z

reservoir ':Q after completion of the measurement. This has the

purpose of bringing body K (now in contact with one of the two

Intervals) back to its original condition as it was before the
	

i

"measurement". The direct connection of the intervals A and B, 	 E

and of the cooled or heated body K with the reservoir To,
	 i

necessarily causes an increase in entropy. This cannot be avoided,

because it would be useless to try to warm the interval A by

successive contact with reservoirs of intermediate temperatures to

temperature To , or likewise to try to cool B to T o . After the

completed measurement we do not know which of the two intervals is

now in contact with body K, and likewise, we do not know whether

body K was last in contact with TA or TB . We also do not know

whether we should use intermediate temperatures between T A and

To or between To and TB.

The average amounts of entropy produced in this manner, S 1 and

S z , can be determined if the heat capacity as a function of

the temperature u (T) for body K is known, since the entropy is /853

to be calculated from the heat capacity. We naturally ab-stract

from the heat capacity of the intervals, A and B. If the position

coordinates of the pointer at the time of "measurement" were in

the prominent interval, and if the body was in contact-with

interval A, then the entropy on successive cooling of the heat

reservoirs is:

f^

Thus the entropy of thiq heat reservoir on direct contact with

heat reservoir To is:

-r.-

16	
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Thus, the sum of the entropy is increased by:
To

S 
_;t(T'A)-n(f^) 

+ f 
1 du dr
	 (7)

'^	 T^ 	 T dC
rA

Analogous to this, the entropy would increase by

To

S 	 (Te) K (TO) + 

fT

1 d i
	(8)n =	 1' 	 dT d

T

when the body was in contact with interval B at the moment of

"measurement",.

Now let's evaluate these expressions for the special, simple

case when the body possesses only two energy states, a lower

and upper. If such a, .Vody with a heat reservoir of some tempera-

ture T is in thermal;^qntact, then the probability of its being

in the upper or lower Mate is given by

P( T) = - . _t
l+.Qe-ir

Y
- trOr	 y(T) ^ —e	 (9) ---^ .

i t ge k 

Here, "L" is the energy difference of the two states and ''g"

is the statistical weight. We can equate the energy of the lower

state to zero, without this being a limitation. There results*

`A = f] VA) 4. log 'I (1'A)1'(J'0) + k lo^ J'(l A)
9 ( 7'0) J' VA)	 J' (7'^1

or	 I	 (10)

N)r = P (TO k log	 - - + k lob;
9 ( 1'e)1' Vo)	 7 V.)

* See the appendix at the conclusion of the work.
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Here q and p are the functions of T given by formula (9) which

are to be taken here for the arguments T o , TA , and TB.

If we now want to determine that a certain conclusion

regarding the position coordinate of the pointer is possible from

the energy content of the body K, we must show that the body got

into the lower state whenever it comes into contact with T A , or

in the higher state when in contact with TB . This means that:

1) (LEA) _ ^^ Y (TA) _ ^^^	 P (^ u) = ll ^! (%'») _= 1

This cannot be proven, but cart be approximated if we let T A go to

absolute zero, and the statistical weight "g" go to infinity. [In

going to the limit, To is so changed that p(T 0 ) and q(T0 ) remain

unchanged.] From the formula (10) results:

."A	 log Y (r= — k log P (T,) ; SD = — k	 •)	
( 11 )

S11 we find that:

,A	 till

C t + C r = 1.

The limit can be realized by our previous conclusions; the use

of semipermeable walls according to Figure 1 allows a complete

utilization of the measurement: inequality (1) certainly cannot

be intensified.

As we have seen from this example, a simple device can

accomplish what interference by an intelligent subject would pro-

vide, with respect to that which is important. In this example,

we have pursued the "life processes" of a device and we can see

that the requis'_te amount of entropy is produced, gust exactly

as provided by thermodynamics.

Now if we form the expression a-S; +,_  

18



f^

4

lY
C

i

APPENDIX

In the case under consideration, when the frequency of both

conditions depends on the temperature according to the formulas:

1(T) =	 1 Y q(T) — 4c tr

^+A• 
tT	 ^.1 7a IT

and thus the average energy of the body is given by

Y

tr
i#(T) = r9(T)	 +!.4e 

-'r
1+Dd- RT

then.the identity

_ r
1 du _ r! fu(r +klog (1+0  er))T d T ;Fr I r	 `

is valid.

With this, we can write the expression

	

F' (TA) 	 1 d u9^ _ -	 ^^--- -) J T dT dT
T,j

thus.
— u(TA)'- uo) +jn(7)+klo 11	 }r! T•A -	 to	 Y	

6 t.0e	
^TA

and when we pass to the limits, we obtain

1	 1t ge tT$
SA = "(TA) \(

r

 To — T, l t k lob	 -r.

t T^
1-}-ye

If we now substitute in the last expression according to (9),

 Y

1 r .qt	 -7.	 1
P(T)

for TA and To , we obtain

	

(	 1	 r)

	

\ T. TAI	 r (T.)

ORIGINAL' PAGE 1B
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and if then, according to (12), we substitute
w (TA ) - " 9 (TA)

there results

A = 4(' A ) (N	
w 

)+klog
P(TA)$	 r	 —

TI TA	 j (T^

If we substitute according to (9)

n _. _A. Ing '/(T)

/856

for TA and To , we obtain

N.,	 '/ 0"') k In d;	 k Ing 
POO

We obtain the corresponding formula for S A by exchanging

Index A for B. Then we get:

/ )klo /r(7n)'l('lIr)	 kIn,/,rl^r)

The former is the formula which is given in the text for SA.

We can also express formula for S  somewhat differently, by 	 4

writing	 `I

multiplying out and adding the first and last member. It then

becomes:

Sit =Jr (T„) 1 log
J' (TO) 9(Tn) 

r klo^ 7(TO)

)
This is the formula given in the text for SB.

20
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