
Recognizing Actions using Embodiment & Empathy

by

Robert Louis M
c
Intyre

Submitted to the Department of Electrical Engineering and Computer

Science

in partial ful�llment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

© Robert Louis M
c
Intyre, MMXIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and to

distribute publicly paper and electronic copies of this thesis document in

whole or in part in any medium now known or hereafter created.

Author .

Department of Electrical Engineering and Computer Science

May 23, 2014

Certi�ed by .

Patrick H. Winston

Ford Professor of Arti�cial Intelligence and Computer Science

Thesis Supervisor

Accepted by .

Prof. Albert R. Meyer

Chairman, Masters of Engineering Thesis Committee

2

Recognizing Actions using Embodiment & Empathy
by

Robert Louis M
c
Intyre

Submitted to the Department of Electrical Engineering and Computer Science

on May 23, 2014, in partial ful�llment of the

requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract
Here I demonstrate the power of using embodied arti�cial intelligence to attack the ac-
tion recognition problem, which is the challenge of recognizing actions performed by a

creature given limited data about the creature’s actions, such as a video recording. I solve

this problem in the case of a worm-like creature performing actions such as curling and

wiggling.

To attack the action recognition problem, I developed a computational model of em-

pathy (EMPATH) which allows me to recognize actions using simple, embodied represen-

tations of actions (which require rich sensory data), even when that sensory data is not

actually available. The missing sense data is “imagined” by the system by combining

previous experiences gained from unsupervised free play. The worm is a �ve-segment

creature equipped with touch, proprioception, and muscle tension senses. It recognizes

actions using only proprioception data.

In order to build this empathic, action-recognizing system, I created a program called

CORTEX, which is a complete platform for embodied AI research. It provides multiple

senses for simulated creatures, including vision, touch, proprioception, muscle tension,

and hearing. Each of these senses provides a wealth of parameters that are biologically

inspired. CORTEX is able to simulate any number of creatures and senses, and provides

facilities for easily modeling and creating new creatures. As a research platform it is more

complete than any other system currently available.

Thesis Supervisor: Patrick H. Winston

Title: Ford Professor of Arti�cial Intelligence and Computer Science

Contents

1 Empathy & Embodiment: problem solving strategies 7

1.1 The problem: recognizing actions is hard! 7

1.2 A step forward: the sensorimotor-centered approach 10

1.3 EMPATH recognizes actions using empathy 11

1.4 EMPATH is built on CORTEX, a creature builder. 14

2 Designing CORTEX . 18

2.1 Building in simulation versus reality 18

2.2 Simulated time enables rapid prototyping & simple programs . . 19

2.3 All sense organs are two-dimensional surfaces 20

2.4 Video game engines provide ready-made physics and shading . . 22

2.5 CORTEX is based on jMonkeyEngine3 22

2.6 CORTEX uses Blender to create creature models 23

2.7 Bodies are composed of segments connected by joints 24

2.8 Sight reuses standard video game components. 31

2.9 . . . but hearing must be built from scratch 38

2.10 Hundreds of hair-like elements provide a sense of touch 45

2.11 Proprioception provides knowledge of your own body’s position 56

2.12 Muscles contain both sensors and e�ectors 58

2.13 CORTEX brings complex creatures to life! 61

2.14 CORTEX enables many possibilities for further research 65

3 EMPATH: action recognition in a simulated worm 67

3.1 Embodiment factors action recognition into manageable parts . . 68

3.2 Action recognition is easy with a full gamut of senses 68

3.3 Φ-space describes the worm’s experiences 72

3.4 Empathy is the process of building paths in Φ-space 73

3.5 EMPATH recognizes actions e�ciently 78

3.6 Digression: Learning touch sensor layout through free play . . . 81

3.7 Recognizing an object using embodied representation 86

4 Contributions . 89

5

1 Appendix: CORTEX User Guide . 90

1.1 Obtaining CORTEX . 90

1.2 Running CORTEX . 90

1.3 Creating creatures . 90

1.4 CORTEX API . 94

6

1. Empathy & Embodiment: problem solving strategies

1 Empathy&Embodiment: problem solving strategies

By the end of this thesis, you will have a novel approach to representing an recognizing

physical actions using embodiment and empathy. You will also see one way to e�ciently

implement physical empathy for embodied creatures. Finally, you will become familiar

with CORTEX, a system for designing and simulating creatures with rich senses, which

I have designed as a library that you can use in your own research. Note that I do not
process video directly — I start with knowledge of the positions of a creature’s body parts

and works from there.

This is the core vision of my thesis: That one of the important ways in which we

understand others is by imagining ourselves in their position and emphatically feeling

experiences relative to our own bodies. By understanding events in terms of our own

previous corporeal experience, we greatly constrain the possibilities of what would oth-

erwise be an unwieldy exponential search. This extra constraint can be the di�erence

between easily understanding what is happening in a video and being completely lost in

a sea of incomprehensible color and movement.

1.1 The problem: recognizing actions is hard!

Examine the following image. What is happening? As you, and indeed very young chil-

dren, can easily determine, this is an image of drinking.

Nevertheless, it is beyond the state of the art for a computer vision program to de-

scribe what’s happening in this image. Part of the problem is that many computer vision

systems focus on pixel-level details or comparisons to example images (such as Ke, Suk-

thankar, and Hebert 2005), but the 3D world is so variable that it is hard to describe the

world in terms of possible images.

In fact, the contents of a scene may have much less to do with pixel probabilities

than with recognizing various a�ordances: things you can move, objects you can grasp,

spaces that can be �lled . For example, what processes might enable you to see the chair

in �gure 2?

Finally, how is it that you can easily tell the di�erence between how the girls muscles
are working in �gure 3?

Each of these examples tells us something about what might be going on in our minds

as we easily solve these recognition problems:

• The hidden chair shows us that we are strongly triggered by cues relating to the

position of human bodies, and that we can determine the overall physical con�gu-

ration of a human body even if much of that body is occluded.

7

The problem: recognizing actions is hard!

Figure 1: A cat drinking some water. Identifying this action is beyond the capabil-

ities of existing computer vision systems.

• The picture of the girl pushing against the wall tells us that we have common sense

knowledge about the kinetics of our own bodies. We know well how our muscles

would have to work to maintain us in most positions, and we can easily project

this self-knowledge to imagined positions triggered by images of the human body.

• The cat tells us that imagination of some kind plays an important role in under-

standing actions. The question is: Can we be more precise about what sort of

imagination is required to understand these actions?

8

The problem: recognizing actions is hard!

Figure 2: The chair in this image is quite obvious to humans, but it can’t be found

by any modern computer vision program.

Figure 3: The mysterious “common sense” appears here as you are able to discern

the di�erence in how the girl’s arm muscles are activated between the two images.

9

A step forward: the sensorimotor-centered approach

1.2 A step forward: the sensorimotor-centered approach
In this thesis, I explore the idea that our knowledge of our own bodies, combined with

our own rich senses, enables us to recognize the actions of others.

For example, I think humans are able to label the cat video as “drinking” because they

imagine themselves as the cat, and imagine putting their face up against a stream of water

and sticking out their tongue. In that imagined world, they can feel the cool water hitting

their tongue, and feel the water entering their body, and are able to recognize that feeling
as drinking. So, the label of the action is not really in the pixels of the image, but is found

clearly in a simulation / recollection inspired by those pixels. An imaginative system,

having been trained on drinking and non-drinking examples and learning that the most

important component of drinking is the feeling of water sliding down one’s throat, would

analyze a video of a cat drinking in the following manner:

1. Create a physical model of the video by putting a “fuzzy” model of its own body in

place of the cat. Possibly also create a simulation of the stream of water.

2. “Play out” this simulated scene and generate imagined sensory experience. This

will include relevant muscle contractions, a close up view of the stream from the

cat’s perspective, and most importantly, the imagined feeling of water entering the

mouth. The imagined sensory experience can come from a simulation of the event,

but can also be pattern-matched from previous, similar embodied experience.

3. The action is now easily identi�ed as drinking by the sense of taste alone. The

other senses (such as the tongue moving in and out) help to give plausibility to

the simulated action. Note that the sense of vision, while critical in creating the

simulation, is not critical for identifying the action from the simulation.

For the chair examples, the process is even easier:

1. Align a model of your body to the person in the image.

2. Generate proprioceptive sensory data from this alignment.

3. Use the imagined proprioceptive data as a key to lookup related sensory experience

associated with that particular proprioceptive feeling.

4. Retrieve the feeling of your bottom resting on a surface, your knees bent, and your

leg muscles relaxed.

5. This sensory information is consistent with your sitting? sensory predicate, so

you (and the entity in the image) must be sitting.

10

EMPATH recognizes actions using empathy

6. There must be a chair-like object since you are sitting.

Empathy o�ers yet another alternative to the age-old AI representation question:

“What is a chair?” — A chair is the feeling of sitting!

One powerful advantage of empathic problem solving is that it factors the action

recognition problem into two easier problems. To use empathy, you need an aligner,
which takes the video and a model of your body, and aligns the model with the video.

Then, you need a recognizer, which uses the aligned model to interpret the action. The

power in this method lies in the fact that you describe all actions from a body-centered

viewpoint. You are less tied to the particulars of any visual representation of the actions.

If you teach the system what “running” is, and you have a good enough aligner, the

system will from then on be able to recognize running from any point of view – even

strange points of view like above or underneath the runner. This is in contrast to action

recognition schemes that try to identify actions using a non-embodied approach. If these

systems learn about running as viewed from the side, they will not automatically be able

to recognize running from any other viewpoint.

Another powerful advantage is that using the language of multiple body-centered rich

senses to describe body-centered actions o�ers a massive boost in descriptive capability.

Consider how di�cult it would be to compose a set of HOG (Histogram of Oriented Gra-

dients) �lters to describe the action of a simple worm-creature “curling” so that its head

touches its tail, and then behold the simplicity of describing thus action in a language

designed for the task (listing 1):

Listing 1: Body-centered actions are best expressed in a body-centered language.

This code detects when the worm has curled into a full circle. Imagine how you

would replicate this functionality using low-level pixel features such as HOG �l-

ters!

(defn grand-circle?
"Does the worm form a majestic circle (one end touching the other)?"
[experiences]
(and (curled? experiences)

(let [worm-touch (:touch (peek experiences))
tail-touch (worm-touch 0)
head-touch (worm-touch 4)]

(and (< 0.2 (contact worm-segment-bottom-tip tail-touch))
(< 0.2 (contact worm-segment-top-tip head-touch))))))

1.3 EMPATH recognizes actions using empathy
Exploring these ideas further demands a concrete implementation, so �rst, I built a system

for constructing virtual creatures with physiologically plausible sensorimotor systems

11

EMPATH recognizes actions using empathy

and detailed environments. The result is CORTEX, which is described in section 2.

Next, I wrote routines which enabled a simple worm-like creature to infer the actions

of a second worm-like creature, using only its own prior sensorimotor experiences and

knowledge of the second worm’s joint positions. This program, EMPATH, is described in

section 3. It’s main components are:

Embodied Action De�nitions Many otherwise complicated actions are easily described

in the language of a full suite of body-centered, rich senses and experiences. For

example, drinking is the feeling of water sliding down your throat, and cooling

your insides. It’s often accompanied by bringing your hand close to your face, or

bringing your face close to water. Sitting down is the feeling of bending your knees,

activating your quadriceps, then feeling a surface with your bottom and relaxing

your legs. These body-centered action descriptions can be either learned or hard

coded.

Guided Play The creature moves around and experiences the world through its unique

perspective. As the creature moves, it gathers experiences that satisfy the embodied

action de�nitions.

Posture imitation When trying to interpret a video or image, the creature takes a

model of itself and aligns it with whatever it sees. This alignment might even cross

species, as when humans try to align themselves with things like ponies, dogs, or

other humans with a di�erent body type.

Empathy The alignment triggers associations with sensory data from prior experi-

ences. For example, the alignment itself easily maps to proprioceptive data. Any

sounds or obvious skin contact in the video can to a lesser extent trigger previous

experience keyed to hearing or touch. Segments of previous experiences gained

from play are stitched together to form a coherent and complete sensory portrait

of the scene.

Recognition With the scene described in terms of remembered �rst person sensory

events, the creature can now run its action-de�nition programs (such as the one in

listing 1) on this synthesized sensory data, just as it would if it were actually expe-

riencing the scene �rst-hand. If previous experience has been accurately retrieved,

and if it is analogous enough to the scene, then the creature will correctly identify

the action in the scene.

My program, EMPATH uses this empathic problem solving technique to interpret the

actions of a simple, worm-like creature.

12

EMPATH recognizes actions using empathy

Figure 4: The worm performs many actions during free play such as curling, wig-

gling, and resting.

Main Results

• After one-shot supervised training, EMPATH was able to recognize a wide variety

of static poses and dynamic actions—ranging from curling in a circle to wiggling

with a particular frequency — with 95% accuracy.

• These results were completely independent of viewing angle because the under-

lying body-centered language fundamentally is independent; once an action is

learned, it can be recognized equally well from any viewing angle.

• EMPATH is surprisingly short; the sensorimotor-centered language provided by CORTEX
resulted in extremely economical recognition routines — about 500 lines in all —

suggesting that such representations are very powerful, and often indispensable

13

EMPATH is built on CORTEX, a creature builder.

Figure 5: EMPATH recognized and classi�ed each of these poses by inferring the

complete sensory experience from proprioceptive data.

for the types of recognition tasks considered here.

• Although for expediency’s sake, I relied on direct knowledge of joint positions in

this proof of concept, it would be straightforward to extend EMPATH so that it (more

realistically) infers joint positions from its visual data.

1.4 EMPATH is built on CORTEX, a creature builder.
I built CORTEX to be a general AI research platform for doing experiments involving mul-

tiple rich senses and a wide variety and number of creatures. I intend it to be useful as

a library for many more projects than just this thesis. CORTEX was necessary to meet a

need among AI researchers at CSAIL and beyond, which is that people often will invent

wonderful ideas that are best expressed in the language of creatures and senses, but in

order to explore those ideas they must �rst build a platform in which they can create sim-

ulated creatures with rich senses! There are many ideas that would be simple to execute

(such as EMPATH or Larson’s self-organizing maps (Larson 2003)), but attached to them is

the multi-month e�ort to make a good creature simulator. Often, that initial investment

of time proves to be too much, and the project must make do with a lesser environment

or be abandoned entirely.

CORTEX is well suited as an environment for embodied AI research for three reasons:

• You can design new creatures using Blender (Blender 2013), a popular 3D modeling

program. Each sense can be speci�ed using special blender nodes with biologically

inspired parameters. You need not write any code to create a creature, and can use

a wide library of pre-existing blender models as a base for your own creatures.

• CORTEX implements a wide variety of senses: touch, proprioception, vision, hear-

ing, and muscle tension. Complicated senses like touch and vision involve multiple

14

EMPATH is built on CORTEX, a creature builder.

sensory elements embedded in a 2D surface. You have complete control over the

distribution of these sensor elements through the use of simple png image �les.

CORTEX implements more comprehensive hearing than any other creature simula-

tion system available.

• CORTEX supports any number of creatures and any number of senses. Time in

CORTEX dilates so that the simulated creatures always perceive a perfectly smooth

�ow of time, regardless of the actual computational load.

CORTEX is built on top of jMonkeyEngine3 (jMonkeyEngine3 2013), which is a video

game engine designed to create cross-platform 3D desktop games. CORTEX is mainly

written in clojure, a dialect of LISP that runs on the java virtual machine (JVM). The API

for creating and simulating creatures and senses is entirely expressed in clojure, though

many senses are implemented at the layer of jMonkeyEngine or below. For example, for

the sense of hearing I use a layer of clojure code on top of a layer of java JNI bindings

that drive a layer of C++ code which implements a modi�ed version of OpenAL to sup-

port multiple listeners. CORTEX is the only simulation environment that I know of that

can support multiple entities that can each hear the world from their own perspective.

Other senses also require a small layer of Java code. CORTEX also uses bullet, a physics

simulator written in C.

Here are some things I anticipate that CORTEX might be used for:

• exploring new ideas about sensory integration

• distributed communication among swarm creatures

• self-learning using free exploration,

• evolutionary algorithms involving creature construction

• exploration of exotic senses and e�ectors that are not possible in the real world

(such as telekinesis or a semantic sense)

• imagination using subworlds

During one test with CORTEX, I created 3,000 creatures each with their own indepen-

dent senses and ran them all at only 1/80 real time. In another test, I created a detailed

model of my own hand, equipped with a realistic distribution of touch (more sensitive at

the �ngertips), as well as eyes and ears, and it ran at around 1/4 real time.

15

EMPATH is built on CORTEX, a creature builder.

Figure 6: Here is the worm from �gure 4 modeled in Blender, a free 3D-modeling

program. Senses and joints are described using special nodes in Blender.

16

EMPATH is built on CORTEX, a creature builder.

F
i
g
u

r
e

7
:

I
m

o
d

e
l
e
d

m
y

o
w

n
r
i
g
h

t
h

a
n

d
i
n

B
l
e
n

d
e
r

a
n

d
r
i
g
g
e
d

i
t

w
i
t
h

a
l
l
t
h

e
s
e
n

s
e
s

t
h

a
t
CO

RT
EX

s
u

p
p

o
r
t
s
.

M
y

s
i
m

u
l
a
t
e
d

h
a
n

d
h

a
s

a
b
i
o

l
o

g
i
c
a
l
l
y

i
n

s
p

i
r
e
d

d
i
s
t
r
i
b
u

t
i
o

n

o
f

t
o

u
c
h

s
e
n

s
o

r
s
.

T
h

e
s
e
n

s
e
s

a
r
e

d
i
s
p

l
a
y

e
d

o
n

t
h

e
r
i
g
h

t
,
a
n

d
t
h

e
s
i
m

u
l
a
t
i
o

n
i
s

d
i
s
-

p
l
a
y

e
d

o
n

t
h

e
l
e
f
t
.

N
o

t
i
c
e

t
h

a
t

m
y

h
a
n

d
i
s

c
u

r
l
i
n

g
i
t
s

�
n

g
e
r
s
,
t
h

a
t

i
t

c
a
n

s
e
e

i
t
s

o
w

n

�
n

g
e
r

f
r
o

m
t
h

e
e
y

e
i
n

i
t
s

p
a
l
m

,
a
n

d
t
h

a
t

i
t

c
a
n

f
e
e
l
i
t
s

o
w

n
t
h

u
m

b
t
o

u
c
h

i
n

g
i
t
s

p
a
l
m

.

17

2. Designing CORTEX

2 Designing CORTEX

In this section, I outline the design decisions that went into making CORTEX, along with

some details about its implementation. (A practical guide to getting started with CORTEX,

which skips over the history and implementation details presented here, is provided in

an appendix at the end of this thesis.)

Throughout this project, I intended for CORTEX to be �exible and extensible enough to

be useful for other researchers who want to test ideas of their own. To this end, wherever

I have had to make architectural choices about CORTEX, I have chosen to give as much

freedom to the user as possible, so that CORTEXmay be used for things I have not foreseen.

2.1 Building in simulation versus reality

The most important architectural decision of all is the choice to use a computer-simulated

environment in the �rst place! The world is a vast and rich place, and for now simulations

are a very poor re�ection of its complexity. It may be that there is a signi�cant qualitative

di�erence between dealing with senses in the real world and dealing with pale facsimiles

of them in a simulation (Brooks 1991). What are the advantages and disadvantages of a

simulation vs. reality?

Simulation

The advantages of virtual reality are that when everything is a simulation, experiments

in that simulation are absolutely reproducible. It’s also easier to change the creature and

environment to explore new situations and di�erent sensory combinations.

If the world is to be simulated on a computer, then not only do you have to worry

about whether the creature’s senses are rich enough to learn from the world, but whether

the world itself is rendered with enough detail and realism to give enough working ma-

terial to the creature’s senses. To name just a few di�culties facing modern physics

simulators: destructibility of the environment, simulation of water/other �uids, large ar-

eas, nonrigid bodies, lots of objects, smoke. I don’t know of any computer simulation

that would allow a creature to take a rock and grind it into �ne dust, then use that dust

to make a clay sculpture, at least not without spending years calculating the interactions

of every single small grain of dust. Maybe a simulated world with today’s limitations

doesn’t provide enough richness for real intelligence to evolve.

18

Simulated time enables rapid prototyping & simple programs

Reality

The other approach for playing with senses is to hook your software up to real cameras,

microphones, robots, etc., and let it loose in the real world. This has the advantage of

eliminating concerns about simulating the world at the expense of increasing the com-

plexity of implementing the senses. Instead of just grabbing the current rendered frame

for processing, you have to use an actual camera with real lenses and interact with pho-

tons to get an image. It is much harder to change the creature, which is now partly a

physical robot of some sort, since doing so involves changing things around in the real

world instead of modifying lines of code. While the real world is very rich and de�nitely

provides enough stimulation for intelligence to develop (as evidenced by our own exis-

tence), it is also uncontrollable in the sense that a particular situation cannot be recreated

perfectly or saved for later use. It is harder to conduct Science because it is harder to re-

peat an experiment. The worst thing about using the real world instead of a simulation

is the matter of time. Instead of simulated time you get the constant and unstoppable

�ow of real time. This severely limits the sorts of software you can use to program an

AI, because all sense inputs must be handled in real time. Complicated ideas may have to

be implemented in hardware or may simply be impossible given the current speed of our

processors. Contrast this with a simulation, in which the �ow of time in the simulated

world can be slowed down to accommodate the limitations of the creature’s program-

ming. In terms of cost, doing everything in software is far cheaper than building custom

real-time hardware. All you need is a laptop and some patience.

2.2 Simulated time enables rapid prototyping & simple programs
I envision CORTEX being used to support rapid prototyping and iteration of ideas. Even if I

could put together a well constructed kit for creating robots, it would still not be enough

because of the scourge of real-time processing. Anyone who wants to test their ideas

in the real world must always worry about getting their algorithms to run fast enough

to process information in real time. The need for real time processing only increases if

multiple senses are involved. In the extreme case, even simple algorithms will have to

be accelerated by ASIC chips or FPGAs, turning what would otherwise be a few lines of

code and a 10x speed penalty into a multi-month ordeal. For this reason, CORTEX sup-

ports time-dilation, which scales back the framerate of the simulation in proportion to

the amount of processing each frame. From the perspective of the creatures inside the

simulation, time always appears to �ow at a constant rate, regardless of how complicated

the environment becomes or how many creatures are in the simulation. The cost is that

CORTEX can sometimes run slower than real time. Time dilation works both ways, how-

ever — simulations of very simple creatures in CORTEX generally run at 40x real-time on

19

All sense organs are two-dimensional surfaces

my machine!

2.3 All sense organs are two-dimensional surfaces

If CORTEX is to support a wide variety of senses, it would help to have a better under-

standing of what a sense actually is! While vision, touch, and hearing all seem like they

are quite di�erent things, I was surprised to learn during the course of this thesis that

they (and all physical senses) can be expressed as exactly the same mathematical object!

Human beings are three-dimensional objects, and the nerves that transmit data from

our various sense organs to our brain are essentially one-dimensional. This leaves up to

two dimensions in which our sensory information may �ow. For example, imagine your

skin: it is a two-dimensional surface around a three-dimensional object (your body). It

has discrete touch sensors embedded at various points, and the density of these sensors

corresponds to the sensitivity of that region of skin. Each touch sensor connects to a

nerve, all of which eventually are bundled together as they travel up the spinal cord to

the brain. Intersect the spinal nerves with a guillotining plane and you will see all of

the sensory data of the skin revealed in a roughly circular two-dimensional image which

is the cross section of the spinal cord. Points on this image that are close together in

this circle represent touch sensors that are probably close together on the skin, although

there is of course some cutting and rearrangement that has to be done to transfer the

complicated surface of the skin onto a two dimensional image.

Most human senses consist of many discrete sensors of various properties distributed

along a surface at various densities. For skin, it is Pacinian corpuscles, Meissner’s corpus-

cles, Merkel’s disks, and Ru�ni’s endings (Bear et al. 2006), which detect pressure and

vibration of various intensities. For ears, it is the stereocilia distributed along the basilar

membrane inside the cochlea; each one is sensitive to a slightly di�erent frequency of

sound. For eyes, it is rods and cones distributed along the surface of the retina. In each

case, we can describe the sense with a surface and a distribution of sensors along that

surface.

In fact, almost every human sense can be e�ectively described in terms of a surface

containing embedded sensors. If the sense had any more dimensions, then there wouldn’t

be enough room in the spinal cord to transmit the information!

Therefore, CORTEX must support the ability to create objects and then be able to

“paint” points along their surfaces to describe each sense.

Fortunately this idea is already a well known computer graphics technique called UV-
mapping. In UV-mapping, the three-dimensional surface of a model is cut and smooshed

until it �ts on a two-dimensional image. You paint whatever you want on that image,

and when the three-dimensional shape is rendered in a game the smooshing and cutting

20

All sense organs are two-dimensional surfaces

is reversed and the image appears on the three-dimensional object.

To make a sense, interpret the UV-image as describing the distribution of that senses

sensors. To get di�erent types of sensors, you can either use a di�erent color for each

type of sensor, or use multiple UV-maps, each labeled with that sensor type. I generally

use a white pixel to mean the presence of a sensor and a black pixel to mean the absence

of a sensor, and use one UV-map for each sensor-type within a given sense.

Figure 8: The UV-map for an elongated icososphere. The white dots each represent

a touch sensor. They are dense in the regions that describe the tip of the �nger, and

less dense along the dorsal side of the �nger opposite the tip.

21

Video game engines provide ready-made physics and shading

Figure 9: Ventral side of the UV-mapped �nger. Notice the density of touch sensors

at the tip.

2.4 Video game engines provide ready-made physics and shading
I did not need to write my own physics simulation code or shader to build CORTEX. Doing

so would lead to a system that is impossible for anyone but myself to use anyway. Instead,

I use a video game engine as a base and modify it to accommodate the additional needs

of CORTEX. Video game engines are an ideal starting point to build CORTEX, because they

are not far from being creature building systems themselves.

First o�, general purpose video game engines come with a physics engine and lighting

/ sound system. The physics system provides tools that can be co-opted to serve as touch,

proprioception, and muscles. Since some games support split screen views, a good video

game engine will allow you to e�ciently create multiple cameras in the simulated world

that can be used as eyes. Video game systems o�er integrated asset management for

things like textures and creature models, providing an avenue for de�ning creatures.

They also understand UV-mapping, since this technique is used to apply a texture to a

model. Finally, because video game engines support a large number of developers, as

long as CORTEX doesn’t stray too far from the base system, other researchers can turn to

this community for help when doing their research.

2.5 CORTEX is based on jMonkeyEngine3
While preparing to build CORTEX I studied several video game engines to see which would

best serve as a base. The top contenders were:

Quake II/Jake2 The Quake II engine was designed by ID software in 1997. All the

22

http://www.idsoftware.com
http://www.bytonic.de/html/jake2.html

CORTEX uses Blender to create creature models

source code was released by ID software into the Public Domain several years ago,

and as a result it has been ported to many di�erent languages. This engine was

famous for its advanced use of realistic shading and it had decent and fast physics

simulation. The main advantage of the Quake II engine is its simplicity, but I ul-

timately rejected it because the engine is too tied to the concept of a �rst-person

shooter game. One of the problems I had was that there does not seem to be any

easy way to attach multiple cameras to a single character. There are also several

physics clipping issues that are corrected in a way that only applies to the main

character and do not apply to arbitrary objects.

Source Engine The Source Engine evolved from the Quake II and Quake I engines and

is used by Valve in the Half-Life series of games. The physics simulation in the

Source Engine is quite accurate and probably the best out of all the engines I inves-

tigated. There is also an extensive community actively working with the engine.

However, applications that use the Source Engine must be written in C++, the code

is not open, it only runs on Windows, and the tools that come with the SDK to han-

dle models and textures are complicated and awkward to use.

jMonkeyEngine3 jMonkeyEngine3 is a new library for creating games in Java. It uses

OpenGL to render to the screen and uses screengraphs to avoid drawing things

that do not appear on the screen. It has an active community and several games in

the pipeline. The engine was not built to serve any particular game but is instead

meant to be used for any 3D game.

I chose jMonkeyEngine3 because it had the most features out of all the free projects I

looked at, and because I could then write my code in clojure, an implementation of LISP
that runs on the JVM.

2.6 CORTEX uses Blender to create creature models
For the simple worm-like creatures I will use later on in this thesis, I could de�ne a simple

API in CORTEX that would allow one to create boxes, spheres, etc., and leave that API as

the sole way to create creatures. However, for CORTEX to truly be useful for other projects,

it needs a way to construct complicated creatures. If possible, it would be nice to leverage

work that has already been done by the community of 3D modelers, or at least enable

people who are talented at modeling but not programming to design CORTEX creatures.

Therefore I use Blender, a free 3D modeling program, as the main way to create crea-

tures in CORTEX. However, the creatures modeled in Blender must also be simple to simu-

late in jMonkeyEngine3’s game engine, and must also be easy to rig with CORTEX’s senses.

I accomplish this with extensive use of Blender’s “empty nodes.”

23

http://source.valvesoftware.com/
http://jmonkeyengine.com/

Bodies are composed of segments connected by joints

Empty nodes have no mass, physical presence, or appearance, but they can hold meta-

data and have names. I use a tree structure of empty nodes to specify senses in the fol-

lowing manner:

• Create a single top-level empty node whose name is the name of the sense.

• Add empty nodes which each contain meta-data relevant to the sense, including a

UV-map describing the number/distribution of sensors if applicable.

• Make each empty-node the child of the top-level node.

Figure 10: An example of annotating a creature model with empty nodes to describe

the layout of senses. There are multiple empty nodes which each describe the

position of muscles, ears, eyes, or joints.

2.7 Bodies are composed of segments connected by joints
Blender is a general purpose animation tool, which has been used in the past to create

high quality movies such as Sintel (Blender 2013). Though Blender can model and render

even complicated things like water, it is crucial to keep models that are meant to be

simulated as creatures simple. Bullet, which CORTEX uses though jMonkeyEngine3, is

a rigid-body physics system. This o�ers a compromise between the expressiveness of a

game level and the speed at which it can be simulated, and it means that creatures should

be naturally expressed as rigid components held together by joint constraints.

24

Bodies are composed of segments connected by joints

But humans are more like a squishy bag wrapped around some hard bones which

de�ne the overall shape. When we move, our skin bends and stretches to accommodate

the new positions of our bones.

One way to make bodies composed of rigid pieces connected by joints seem more

human-like is to use an armature, (or rigging) system, which de�nes a overall “body

mesh” and de�nes how the mesh deforms as a function of the position of each “bone”

which is a standard rigid body. This technique is used extensively to model humans and

create realistic animations. It is not a good technique for physical simulation because it

is a lie – the skin is not a physical part of the simulation and does not interact with any

objects in the world or itself. Objects will pass right though the skin until they come in

contact with the underlying bone, which is a physical object. Without simulating the

skin, the sense of touch has little meaning, and the creature’s own vision will lie to it

about the true extent of its body. Simulating the skin as a physical object requires some

way to continuously update the physical model of the skin along with the movement of

the bones, which is unacceptably slow compared to rigid body simulation.

Therefore, instead of using the human-like “bony meatbag” approach, I decided to

base my body plans on multiple solid objects that are connected by joints, inspired by

the robot EVE from the movie WALL-E.

EVE’s body is composed of several rigid components that are held together by invisi-

ble joint constraints. This is what I mean by eve-like. The main reason that I use eve-like

bodies is for simulation e�ciency, and so that there will be correspondence between the

AI’s senses and the physical presence of its body. Each individual section is simulated

by a separate rigid body that corresponds exactly with its visual representation and does

not change. Sections are connected by invisible joints that are well supported in jMon-

keyEngine3. Bullet, the physics backend for jMonkeyEngine3, can e�ciently simulate

hundreds of rigid bodies connected by joints. Just because sections are rigid does not

mean they have to stay as one piece forever; they can be dynamically replaced with mul-

tiple sections to simulate splitting in two. This could be used to simulate retractable claws

or EVE’s hands, which are able to coalesce into one object in the movie.

Solidifying/Connecting a body

CORTEX creates a creature in two steps: �rst, it traverses the nodes in the blender �le and

creates physical representations for any of them that have mass de�ned in their blender

meta-data.

Listing 2: Program for iterating through the nodes in a blender �le and generating

physical jMonkeyEngine3 objects with mass and a matching physics shape.

25

Bodies are composed of segments connected by joints

Figure 11: EVE from the movie WALL-E. This body plan turns out to be much better

suited to my purposes than a more human-like one.

(defn physical!
"Iterate through the nodes in creature and make them real physical
objects in the simulation."
[#^Node creature]
(dorun
(map
(fn [geom]
(let [physics-control

(RigidBodyControl.
(HullCollisionShape.
(.getMesh geom))

(if-let [mass (meta-data geom "mass")]
(float mass) (float 1)))]

(.addControl geom physics-control)))
(filter #(isa? (class %) Geometry)

(node-seq creature)))))

26

Bodies are composed of segments connected by joints

The next step to making a proper body is to connect those pieces together with joints.

jMonkeyEngine has a large array of joints available via bullet, such as Point2Point,

Cone, Hinge, and a generic Six Degree of Freedom joint, with or without spring restitu-

tion.

Joints are treated a lot like proper senses, in that there is a top-level empty node

named “joints” whose children each represent a joint.

Figure 12: View of the hand model in Blender showing the main “joints” node

(highlighted in yellow) and its children which each represent a joint in the hand.

Each joint node has metadata specifying what sort of joint it is.

CORTEX’s procedure for binding the creature together with joints is as follows:

• Find the children of the “joints” node.

• Determine the two spatials the joint is meant to connect.

• Create the joint based on the meta-data of the empty node.

The higher order function sense-nodes from cortex.sense simpli�es �nding the

joints based on their parent “joints” node.

Listing 3: Retrieving the children empty nodes from a single named empty node is

a common pattern in CORTEX further instances of this technique for the senses will

be omitted

27

Bodies are composed of segments connected by joints

(defn sense-nodes
"For some senses there is a special empty blender node whose
children are considered markers for an instance of that sense. This
function generates functions to find those children, given the name
of the special parent node."
[parent-name]
(fn [#^Node creature]
(if-let [sense-node (.getChild creature parent-name)]
(seq (.getChildren sense-node)) [])))

(def
^{:doc "Return the children of the creature’s \"joints\" node."
:arglists ’([creature])}

joints
(sense-nodes "joints"))

To �nd a joint’s targets, CORTEX creates a small cube, centered around the empty-node,

and grows the cube exponentially until it intersects two physical objects. The objects

are ordered according to the joint’s rotation, with the �rst one being the object that

has more negative coordinates in the joint’s reference frame. Since the objects must be

physical, the empty-node itself escapes detection. Because the objects must be physical,

joint-targets must be called after physical! is called.

Listing 4: Program to �nd the targets of a joint node by exponentially growth of a

search cube.

(defn joint-targets
"Return the two closest two objects to the joint object, ordered
from bottom to top according to the joint’s rotation."
[#^Node parts #^Node joint]
(loop [radius (float 0.01)]
(let [results (CollisionResults.)]
(.collideWith
parts
(BoundingBox. (.getWorldTranslation joint)

radius radius radius) results)
(let [targets

(distinct
(map #(.getGeometry %) results))]

(if (>= (count targets) 2)
(sort-by
#(let [joint-ref-frame-position

(jme-to-blender
(.mult
(.inverse (.getWorldRotation joint))

28

Bodies are composed of segments connected by joints

(.subtract (.getWorldTranslation %)
(.getWorldTranslation joint))))]

(.dot (Vector3f. 1 1 1) joint-ref-frame-position))
(take 2 targets))
(recur (float (* radius 2))))))))

Once CORTEX �nds all joints and targets, it creates them using a dispatch on the meta-

data of each joint node.

Listing 5: Program to dispatch on blender metadata and create joints suitable for

physical simulation.

(defmulti joint-dispatch
"Translate blender pseudo-joints into real JME joints."
(fn [constraints & _]

(:type constraints)))

(defmethod joint-dispatch :point
[constraints control-a control-b pivot-a pivot-b rotation]
(doto (SixDofJoint. control-a control-b pivot-a pivot-b false)
(.setLinearLowerLimit Vector3f/ZERO)
(.setLinearUpperLimit Vector3f/ZERO)))

(defmethod joint-dispatch :hinge
[constraints control-a control-b pivot-a pivot-b rotation]
(let [axis (if-let [axis (:axis constraints)] axis Vector3f/UNIT_X)

[limit-1 limit-2] (:limit constraints)
hinge-axis (.mult rotation (blender-to-jme axis))]

(doto (HingeJoint. control-a control-b pivot-a pivot-b
hinge-axis hinge-axis)

(.setLimit limit-1 limit-2))))

(defmethod joint-dispatch :cone
[constraints control-a control-b pivot-a pivot-b rotation]
(let [limit-xz (:limit-xz constraints)

limit-xy (:limit-xy constraints)
twist (:twist constraints)]

(doto (ConeJoint. control-a control-b pivot-a pivot-b
rotation rotation)

(.setLimit (float limit-xz) (float limit-xy)
(float twist)))))

All that is left for joints is to combine the above pieces into something that can operate

on the collection of nodes that a blender �le represents.

29

Bodies are composed of segments connected by joints

Listing 6: Program to completely create a joint given information from a blender

�le.

(defn connect
"Create a joint between ’obj-a and ’obj-b at the location of
’joint. The type of joint is determined by the metadata on ’joint.

Here are some examples:
{:type :point}
{:type :hinge :limit [0 (/ Math/PI 2)] :axis (Vector3f. 0 1 0)}
(:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)

{:type :cone :limit-xz 0]
:limit-xy 0]
:twist 0]} (use XZY rotation mode in blender!)"

[#^Node obj-a #^Node obj-b #^Node joint]
(let [control-a (.getControl obj-a RigidBodyControl)

control-b (.getControl obj-b RigidBodyControl)
joint-center (.getWorldTranslation joint)
joint-rotation (.toRotationMatrix (.getWorldRotation joint))
pivot-a (world-to-local obj-a joint-center)
pivot-b (world-to-local obj-b joint-center)]

(if-let
[constraints (map-vals eval (read-string (meta-data joint "joint")))]

;; A side-effect of creating a joint registers
;; it with both physics objects which in turn
;; will register the joint with the physics system
;; when the simulation is started.
(joint-dispatch constraints

control-a control-b
pivot-a pivot-b
joint-rotation))))

In general, whenever CORTEX exposes a sense (or in this case physicality), it provides

a function of the type sense!, which takes in a collection of nodes and augments it to

support that sense. The function returns any controls necessary to use that sense. In this

case body! creates a physical body and returns no control functions.

Listing 7: Program to give joints to a creature.

(defn joints!
"Connect the solid parts of the creature with physical joints. The
joints are taken from the \"joints\" node in the creature."
[#^Node creature]
(dorun
(map

30

Sight reuses standard video game components. . .

(fn [joint]
(let [[obj-a obj-b] (joint-targets creature joint)]
(connect obj-a obj-b joint)))

(joints creature))))
(defn body!
"Endow the creature with a physical body connected with joints. The
particulars of the joints and the masses of each body part are
determined in blender."

[#^Node creature]
(physical! creature)
(joints! creature))

All of the code you have just seen amounts to only 130 lines, yet because it builds on

top of Blender and jMonkeyEngine3, those few lines pack quite a punch!

The hand from �gure 12, which was modeled after my own right hand, can now be

given joints and simulated as a creature.

Figure 13: With the ability to create physical creatures from blender, CORTEX gets

one step closer to becoming a full creature simulation environment.

2.8 Sight reuses standard video game components. . .
Vision is one of the most important senses for humans, so I need to build a simulated sense

of vision for my AI. I will do this with simulated eyes. Each eye can be independently

moved and should see its own version of the world depending on where it is.

31

Sight reuses standard video game components. . .

Making these simulated eyes a reality is simple because jMonkeyEngine already con-

tains extensive support for multiple views of the same 3D simulated world. The reason

jMonkeyEngine has this support is because the support is necessary to create games with

split-screen views. Multiple views are also used to create e�cient pseudo-re�ections by

rendering the scene from a certain perspective and then projecting it back onto a surface

in the 3D world.

Figure 14: jMonkeyEngine supports multiple views to enable split-screen games,

like GoldenEye, which was one of the �rst games to use split-screen views.

A Brief Description of jMonkeyEngine’s Rendering Pipeline

jMonkeyEngine allows you to create a ViewPort, which represents a view of the simu-

lated world. You can create as many of these as you want. Every frame, the RenderManager
iterates through each ViewPort, rendering the scene in the GPU. For each ViewPort there

is a FrameBuffer which represents the rendered image in the GPU.

Each ViewPort can have any number of attached SceneProcessor objects, which are

called every time a new frame is rendered. A SceneProcessor receives its ViewPort’s
FrameBuffer and can do whatever it wants to the data. Often this consists of invoking

GPU speci�c operations on the rendered image. The SceneProcessor can also copy the

GPU image data to RAM and process it with the CPU.

32

Sight reuses standard video game components. . .

Figure 15: ViewPorts are cameras in the world. During each frame, the

RenderManager records a snapshot of what each view is currently seeing; these

snapshots are FrameBuffer objects.

Appropriating Views for Vision

Each eye in the simulated creature needs its own ViewPort so that it can see the world

from its own perspective. To this ViewPort, I add a SceneProcessor that feeds the visual

data to any arbitrary continuation function for further processing. That continuation

function may perform both CPU and GPU operations on the data. To make this easy for

the continuation function, the SceneProcessor maintains appropriately sized bu�ers in

RAM to hold the data. It does not do any copying from the GPU to the CPU itself because

it is a slow operation.

Listing 8: Function to make the rendered scene in jMonkeyEngine available for

further processing.

(defn vision-pipeline
"Create a SceneProcessor object which wraps a vision processing
continuation function. The continuation is a function that takes
[#^Renderer r #^FrameBuffer fb #^ByteBuffer b #^BufferedImage bi],
each of which has already been appropriately sized."
[continuation]
(let [byte-buffer (atom nil)

renderer (atom nil)
image (atom nil)]

(proxy [SceneProcessor] []
(initialize

33

Sight reuses standard video game components. . .

[renderManager viewPort]
(let [cam (.getCamera viewPort)

width (.getWidth cam)
height (.getHeight cam)]

(reset! renderer (.getRenderer renderManager))
(reset! byte-buffer

(BufferUtils/createByteBuffer
(* width height 4)))

(reset! image (BufferedImage.
width height
BufferedImage/TYPE_4BYTE_ABGR))))

(isInitialized [] (not (nil? @byte-buffer)))
(reshape [_ _ _])
(preFrame [_])
(postQueue [_])
(postFrame
[#^FrameBuffer fb]
(.clear @byte-buffer)
(continuation @renderer fb @byte-buffer @image))

(cleanup []))))

The continuation function given to vision-pipeline above will be given a Renderer
and three containers for image data. The FrameBuffer references the GPU image data,

but the pixel data can not be used directly on the CPU. The ByteBuffer and BufferedImage
are initially "empty" but are sized to hold the data in the FrameBuffer. I call transferring

the GPU image data to the CPU structures "mixing" the image data.

Optical sensor arrays are described with images and referenced with metadata

The vision pipeline described above handles the �ow of rendered images. Now, CORTEX
needs simulated eyes to serve as the source of these images.

An eye is described in blender in the same way as a joint. They are zero dimensional

empty objects with no geometry whose local coordinate system determines the orien-

tation of the resulting eye. All eyes are children of a parent node named "eyes" just as

all joints have a parent named "joints". An eye binds to the nearest physical object with

bind-sense.

Listing 9: Here, the camera is created based on metadata on the eye-node and at-

tached to the nearest physical object with bind-sense

(defn add-eye!
"Create a Camera centered on the current position of ’eye which
follows the closest physical node in ’creature. The camera will
point in the X direction and use the Z vector as up as determined

34

Sight reuses standard video game components. . .

by the rotation of these vectors in blender coordinate space. Use
XZY rotation for the node in blender."

[#^Node creature #^Spatial eye]
(let [target (closest-node creature eye)

[cam-width cam-height]
;;[640 480] ;; graphics card on laptop doesn’t support

;; arbitrary dimensions.
(eye-dimensions eye)
cam (Camera. cam-width cam-height)
rot (.getWorldRotation eye)]

(.setLocation cam (.getWorldTranslation eye))
(.lookAtDirection
cam ; this part is not a mistake and
(.mult rot Vector3f/UNIT_X) ; is consistent with using Z in
(.mult rot Vector3f/UNIT_Y)) ; blender as the UP vector.
(.setFrustumPerspective
cam (float 45)
(float (/ (.getWidth cam) (.getHeight cam)))
(float 1)
(float 1000))
(bind-sense target cam) cam))

Simulated Retina

An eye is a surface (the retina) which contains many discrete sensors to detect light.

These sensors can have di�erent light-sensing properties. In humans, each discrete sen-

sor is sensitive to red, blue, green, or gray. These di�erent types of sensors can have

di�erent spatial distributions along the retina. In humans, there is a fovea in the center

of the retina which has a very high density of color sensors, and a blind spot which has

no sensors at all. Sensor density decreases in proportion to distance from the fovea.

I want to be able to model any retinal con�guration, so my eye-nodes in blender

contain metadata pointing to images that describe the precise position of the individual

sensors using white pixels. The meta-data also describes the precise sensitivity to light

that the sensors described in the image have. An eye can contain any number of these

images. For example, the metadata for an eye might look like this:

{0xFF0000 "Models/test-creature/retina-small.png"}

Together, the number 0xFF0000 and the image above describe the placement of red-

sensitive sensory elements.

Meta-data to very crudely approximate a human eye might be something like this:

(let [retinal-profile "Models/test-creature/retina-small.png"]
{0xFF0000 retinal-profile

35

Sight reuses standard video game components. . .

Figure 16: An example retinal pro�le image. White pixels are photo-sensitive ele-

ments. The distribution of white pixels is denser in the middle and falls o� at the

edges and is inspired by the human retina.

0x00FF00 retinal-profile
0x0000FF retinal-profile
0xFFFFFF retinal-profile})

The numbers that serve as keys in the map determine a sensor’s relative sensitivity

to the channels red, green, and blue. These sensitivity values are packed into an integer

in the order |_|R|G|B| in 8-bit �elds. The RGB values of a pixel in the image are added

together with these sensitivities as linear weights. Therefore, 0xFF0000 means sensitive

to red only while 0xFFFFFF means sensitive to all colors equally (gray).

Listing 10: This is the core of vision in CORTEX. A given eye node is converted into

a function that returns visual information from the simulation.

(defn vision-kernel
"Returns a list of functions, each of which will return a color
channel’s worth of visual information when called inside a running
simulation."
[#^Node creature #^Spatial eye & {skip :skip :or {skip 0}}]
(let [retinal-map (retina-sensor-profile eye)

camera (add-eye! creature eye)
vision-image
(atom
(BufferedImage. (.getWidth camera)

36

Sight reuses standard video game components. . .

(.getHeight camera)
BufferedImage/TYPE_BYTE_BINARY))

register-eye!
(runonce
(fn [world]
(add-camera!
world camera
(let [counter (atom 0)]
(fn [r fb bb bi]
(if (zero? (rem (swap! counter inc) (inc skip)))
(reset! vision-image

(BufferedImage! r fb bb bi))))))))]
(vec
(map
(fn [[key image]]
(let [whites (white-coordinates image)

topology (vec (collapse whites))
sensitivity (sensitivity-presets key key)]

(attached-viewport.
(fn [world]
(register-eye! world)
(vector
topology
(vec
(for [[x y] whites]
(pixel-sense
sensitivity
(.getRGB @vision-image x y))))))

register-eye!)))
retinal-map))))

Note that since each of the functions generated by vision-kernel shares the same

register-eye! function, the eye will be registered only once the �rst time any of the

functions from the list returned by vision-kernel is called. Each of the functions re-

turned by vision-kernel also allows access to the Viewport through which it receives

images.

All the hard work has been done; all that remains is to apply vision-kernel to each

eye in the creature and gather the results into one list of functions.

Listing 11: With vision!, CORTEX is already a �ne simulation environment for

experimenting with di�erent types of eyes.

(defn vision!
"Returns a list of functions, each of which returns visual sensory
data when called inside a running simulation."

37

. . . but hearing must be built from scratch

[#^Node creature & {skip :skip :or {skip 0}}]
(reduce
concat
(for [eye (eyes creature)]

(vision-kernel creature eye))))

Figure 17: Simulated vision with a test creature and the human-like eye approxi-

mation. Notice how each channel of the eye responds di�erently to the di�erently

colored balls.

The vision code is not much more complicated than the body code, and enables multi-

ple further paths for simulated vision. For example, it is quite easy to create bifocal vision

– you just make two eyes next to each other in blender! It is also possible to encode vi-

sion transforms in the retinal �les. For example, the human like retina �le in �gure 35

approximates a log-polar transform.

This vision code has already been absorbed by the jMonkeyEngine community and

is now (in modi�ed form) part of a system for capturing in-game video to a �le.

2.9 . . . but hearing must be built from scratch
At the end of this section I will have simulated ears that work the same way as the

simulated eyes in the last section. I will be able to place any number of ear-nodes in a

blender �le, and they will bind to the closest physical object and follow it as it moves

around. Each ear will provide access to the sound data it picks up between every frame.

38

. . . but hearing must be built from scratch

Hearing is one of the more di�cult senses to simulate, because there is less support

for obtaining the actual sound data that is processed by jMonkeyEngine3. There is no

"split-screen" support for rendering sound from di�erent points of view, and there is no

way to directly access the rendered sound data.

CORTEX’s hearing is unique because it does not have any limitations compared to

other simulation environments. As far as I know, there is no other system that supports

multiple listeners, and the sound demo at the end of this section is the �rst time it’s been

done in a video game environment.

Brief Description of jMonkeyEngine’s Sound System

jMonkeyEngine’s sound system works as follows:

• jMonkeyEngine uses the AppSettings for the particular application to determine

what sort of AudioRenderer should be used.

• Although some support is provided for multiple AudioRendering backends, jMon-

keyEngine at the time of this writing will either pick no AudioRenderer at all, or

the LwjglAudioRenderer.

• jMonkeyEngine tries to �gure out what sort of system you’re running and extracts

the appropriate native libraries.

• The LwjglAudioRenderer uses the LWJGL (LightWeight Java Game Library) bind-

ings to interface with a C library called OpenAL

• OpenAL renders the 3D sound and feeds the rendered sound directly to any of var-

ious sound output devices with which it knows how to communicate.

A consequence of this is that there’s no way to access the actual sound data produced

by OpenAL. Even worse, OpenAL only supports one listener (it renders sound data from

only one perspective), which normally isn’t a problem for games, but becomes a problem

when trying to make multiple AI creatures that can each hear the world from a di�erent

perspective.

To make many AI creatures in jMonkeyEngine that can each hear the world from

their own perspective, or to make a single creature with many ears, it is necessary to go

all the way back to OpenAL and implement support for simulated hearing there.

39

http://lwjgl.org/
http://kcat.strangesoft.net/openal.html

. . . but hearing must be built from scratch

Extending OpenAl

Extending OpenAL to support multiple listeners requires 500 lines of C code and is too

hairy to mention here. Instead, I will show a small amount of extension code and go over

the high level strategy. Full source is of course available with the CORTEX distribution if

you’re interested.

OpenAL goes to great lengths to support many di�erent systems, all with di�erent

sound capabilities and interfaces. It accomplishes this di�cult task by providing code for

many di�erent sound backends in pseudo-objects called Devices. There’s a device for the

Linux Open Sound System and the Advanced Linux Sound Architecture, there’s one for

Direct Sound on Windows, and there’s even one for Solaris. OpenAL solves the problem

of platform independence by providing all these Devices.

Wrapper libraries such as LWJGL are free to examine the system on which they are

running and then select an appropriate device for that system.

There are also a few "special" devices that don’t interface with any particular system.

These include the Null Device, which doesn’t do anything, and the Wave Device, which

writes whatever sound it receives to a �le, if everything has been set up correctly when

con�guring OpenAL.

Actual mixing (Doppler shift and distance.environment-based attenuation) of the sound

data happens in the Devices, and they are the only point in the sound rendering process

where this data is available.

Therefore, in order to support multiple listeners, and get the sound data in a form

that the AIs can use, it is necessary to create a new Device which supports this feature.

Adding a device to OpenAL is rather tricky – there are �ve separate �les in the OpenAL
source tree that must be modi�ed to do so. I named my device the "Multiple Audio Send"

Device, or Send Device for short, since it sends audio data back to the calling application

like an Aux-Send cable on a mixing board.

The main idea behind the Send device is to take advantage of the fact that LWJGL

only manages one context when using OpenAL. A context is like a container that holds

samples and keeps track of where the listener is. In order to support multiple listeners, the

Send device identi�es the LWJGL context as the master context, and creates any number

of slave contexts to represent additional listeners. Every time the device renders sound,

it synchronizes every source from the master LWJGL context to the slave contexts. Then,

it renders each context separately, using a di�erent listener for each one. The rendered

sound is made available via JNI to jMonkeyEngine.

Switching between contexts is not the normal operation of a Device, and one of the

problems with doing so is that a Device normally keeps around a few pieces of state

such as the ClickRemoval array above which will become corrupted if the contexts are

not rendered in parallel. The solution is to create a copy of this normally global device

40

. . . but hearing must be built from scratch

state for each context, and copy it back and forth into and out of the actual device state

whenever a context is rendered.

The core of the Send device is the syncSources function, which does the job of copy-

ing all relevant data from one context to another.

Listing 12: Program for extending OpenAL to support multiple listeners via context

copying/switching.

void syncSources(ALsource *masterSource, ALsource *slaveSource,
ALCcontext *masterCtx, ALCcontext *slaveCtx){

ALuint master = masterSource->source;
ALuint slave = slaveSource->source;
ALCcontext *current = alcGetCurrentContext();

syncSourcef(master,slave,masterCtx,slaveCtx,AL_PITCH);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_GAIN);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_MAX_DISTANCE);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_ROLLOFF_FACTOR);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_REFERENCE_DISTANCE);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_MIN_GAIN);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_MAX_GAIN);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_CONE_OUTER_GAIN);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_CONE_INNER_ANGLE);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_CONE_OUTER_ANGLE);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_SEC_OFFSET);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_SAMPLE_OFFSET);
syncSourcef(master,slave,masterCtx,slaveCtx,AL_BYTE_OFFSET);

syncSource3f(master,slave,masterCtx,slaveCtx,AL_POSITION);
syncSource3f(master,slave,masterCtx,slaveCtx,AL_VELOCITY);
syncSource3f(master,slave,masterCtx,slaveCtx,AL_DIRECTION);

syncSourcei(master,slave,masterCtx,slaveCtx,AL_SOURCE_RELATIVE);
syncSourcei(master,slave,masterCtx,slaveCtx,AL_LOOPING);

alcMakeContextCurrent(masterCtx);
ALint source_type;
alGetSourcei(master, AL_SOURCE_TYPE, &source_type);

// Only static sources are currently synchronized!
if (AL_STATIC == source_type){

ALint master_buffer;
ALint slave_buffer;
alGetSourcei(master, AL_BUFFER, &master_buffer);
alcMakeContextCurrent(slaveCtx);
alGetSourcei(slave, AL_BUFFER, &slave_buffer);

41

. . . but hearing must be built from scratch

if (master_buffer != slave_buffer){
alSourcei(slave, AL_BUFFER, master_buffer);

}
}

// Synchronize the state of the two sources.
alcMakeContextCurrent(masterCtx);
ALint masterState;
ALint slaveState;

alGetSourcei(master, AL_SOURCE_STATE, &masterState);
alcMakeContextCurrent(slaveCtx);
alGetSourcei(slave, AL_SOURCE_STATE, &slaveState);

if (masterState != slaveState){
switch (masterState){
case AL_INITIAL : alSourceRewind(slave); break;
case AL_PLAYING : alSourcePlay(slave); break;
case AL_PAUSED : alSourcePause(slave); break;
case AL_STOPPED : alSourceStop(slave); break;
}

}
// Restore whatever context was previously active.
alcMakeContextCurrent(current);

}

With this special context-switching device, and some ugly JNI bindings that are not

worth mentioning, CORTEX gains the ability to access multiple sound streams from OpenAL.

Listing 13: Program to create an ear from a blender empty node. The ear follows

around the nearest physical object and passes all sensory data to a continuation

function.

(defn add-ear!
"Create a Listener centered on the current position of ’ear
which follows the closest physical node in ’creature and
sends sound data to ’continuation."
[#^Application world #^Node creature #^Spatial ear continuation]
(let [target (closest-node creature ear)

lis (Listener.)
audio-renderer (.getAudioRenderer world)
sp (hearing-pipeline continuation)]

(.setLocation lis (.getWorldTranslation ear))
(.setRotation lis (.getWorldRotation ear))
(bind-sense target lis)
(update-listener-velocity! target lis)

42

. . . but hearing must be built from scratch

(.addListener audio-renderer lis)
(.registerSoundProcessor audio-renderer lis sp)))

The Send device, unlike most of the other devices in OpenAL, does not render sound

unless asked. This enables the system to slow down or speed up depending on the needs

of the AIs who are using it to listen. If the device tried to render samples in real-time, a

complicated AI whose mind takes 100 seconds of computer time to simulate 1 second of

AI-time would miss almost all of the sound in its environment!

Listing 14: Program to enable arbitrary hearing in CORTEX

(defn hearing-kernel
"Returns a function which returns auditory sensory data when called
inside a running simulation."

[#^Node creature #^Spatial ear]
(let [hearing-data (atom [])

register-listener!
(runonce
(fn [#^Application world]
(add-ear!
world creature ear
(comp #(reset! hearing-data %)

byteBuffer->pulse-vector))))]
(fn [#^Application world]

(register-listener! world)
(let [data @hearing-data

topology
(vec (map #(vector % 0) (range 0 (count data))))]

[topology data]))))

(defn hearing!
"Endow the creature in a particular world with the sense of
hearing. Will return a sequence of functions, one for each ear,
which when called will return the auditory data from that ear."

[#^Node creature]
(for [ear (ears creature)]
(hearing-kernel creature ear)))

Armed with these functions, CORTEX is able to test possibly the �rst ever instance of

multiple listeners in a video game engine based simulation!

Listing 15: Here a simple creature responds to sound by changing its color from

gray to green when the total volume goes over a threshold.

/**
* Respond to sound! This is the brain of an AI entity that

43

. . . but hearing must be built from scratch

* hears its surroundings and reacts to them.
*/
public void process(ByteBuffer audioSamples,

int numSamples, AudioFormat format) {
audioSamples.clear();
byte[] data = new byte[numSamples];
float[] out = new float[numSamples];
audioSamples.get(data);
FloatSampleTools.

byte2floatInterleaved
(data, 0, out, 0, numSamples/format.getFrameSize(), format);

float max = Float.NEGATIVE_INFINITY;
for (float f : out){if (f > max) max = f;}
audioSamples.clear();

if (max > 0.1){
entity.getMaterial().setColor("Color", ColorRGBA.Green);

}
else {

entity.getMaterial().setColor("Color", ColorRGBA.Gray);
}

This system of hearing has also been co-opted by the jMonkeyEngine3 community

and is used to record audio for demo videos.

44

Hundreds of hair-like elements provide a sense of touch

Figure 18: First ever simulation of multiple listeners in CORTEX. Each cube is a

creature which processes sound data with the process function from listing 15.

the ball is constantly emitting a pure tone of constant volume. As it approaches

the cubes, they each change color in response to the sound.

2.10 Hundreds of hair-like elements provide a sense of touch

Touch is critical to navigation and spatial reasoning and as such I need a simulated version

of it to give to my AI creatures.

Human skin has a wide array of touch sensors, each of which specialize in detecting

di�erent vibrational modes and pressures. These sensors can integrate a vast expanse of

skin (i.e. your entire palm), or a tiny patch of skin at the tip of your �nger. The hairs of

the skin help detect objects before they even come into contact with the skin proper.

However, touch in my simulated world can not exactly correspond to human touch

because my creatures are made out of completely rigid segments that don’t deform like

human skin.

Instead of measuring deformation or vibration, I surround each rigid part with a plen-

itude of hair-like objects (feelers) which do not interact with the physical world. Physical

objects can pass through them with no e�ect. The feelers are able to tell when other

objects pass through them, and they constantly report how much of their extent is cov-

ered. So even though the creature’s body parts do not deform, the feelers create a margin

around those body parts which achieves a sense of touch which is a hybrid between a

human’s sense of deformation and sense from hairs.

45

Hundreds of hair-like elements provide a sense of touch

Implementing touch in jMonkeyEngine follows a di�erent technical route than vision

and hearing. Those two senses piggybacked o� jMonkeyEngine’s 3D audio and video

rendering subsystems. To simulate touch, I use jMonkeyEngine’s physics system to exe-

cute many small collision detections, one for each feeler. The placement of the feelers is

determined by a UV-mapped image which shows where each feeler should be on the 3D

surface of the body.

De�ning Touch Meta-Data in Blender

Each geometry can have a single UV map which describes the position of the feelers

which will constitute its sense of touch. This image path is stored under the “touch” key.

The image itself is black and white, with black meaning a feeler length of 0 (no feeler is

present) and white meaning a feeler length of scale, which is a �oat stored under the

key "scale".

Listing 16: Touch does not use empty nodes, to store metadata, because the meta-

data of each solid part of a creature’s body is su�cient.

(defn tactile-sensor-profile
"Return the touch-sensor distribution image in BufferedImage format,
or nil if it does not exist."
[#^Geometry obj]
(if-let [image-path (meta-data obj "touch")]
(load-image image-path)))

(defn tactile-scale
"Return the length of each feeler. Default scale is 0.01
jMonkeyEngine units."
[#^Geometry obj]
(if-let [scale (meta-data obj "scale")]
scale 0.1))

Here is an example of a UV-map which speci�es the position of touch sensors along

the surface of the upper segment of a �ngertip.

Implementation Summary

To simulate touch there are three conceptual steps. For each solid object in the creature,

you �rst have to get UV image and scale parameter which de�ne the position and length

of the feelers. Then, you use the triangles which comprise the mesh and the UV data

stored in the mesh to determine the world-space position and orientation of each feeler.

Then once every frame, update these positions and orientations to match the current

46

Hundreds of hair-like elements provide a sense of touch

Figure 19: This is the tactile-sensor-pro�le for the upper segment of a �ngertip. It

de�nes regions of high touch sensitivity (where there are many white pixels) and

regions of low sensitivity (where white pixels are sparse).

position and orientation of the object, and use physics collision detection to gather tactile

data.

Extracting the meta-data has already been described. The third step, physics collision

detection, is handled in touch-kernel. Translating the positions and orientations of the

feelers from the UV-map to world-space is itself a three-step process.

• Find the triangles which make up the mesh in pixel-space and in world-space.

(triangles, pixel-triangles).

• Find the coordinates of each feeler in world-space. These are the origins of the

feelers. (feeler-origins).

• Calculate the normals of the triangles in world space, and add them to each of the

origins of the feelers. These are the normalized coordinates of the tips of the feelers.

47

Hundreds of hair-like elements provide a sense of touch

(feeler-tips).

Triangle Math

The rigid objects which make up a creature have an underlying Geometry, which is a

Mesh plus a Material and other important data involved with displaying the object.

A Mesh is composed of Triangles, and each Triangle has three vertices which have

coordinates in world space and UV space.

Here, triangles gets all the world-space triangles which comprise a mesh, while

pixel-triangles gets those same triangles expressed in pixel coordinates (which are

UV coordinates scaled to �t the height and width of the UV image).

Listing 17: Programs to extract triangles from a geometry and get their vertices in

both world and UV-coordinates.

(defn triangle
"Get the triangle specified by triangle-index from the mesh."
[#^Geometry geo triangle-index]
(triangle-seq
(let [scratch (Triangle.)]
(.getTriangle (.getMesh geo) triangle-index scratch) scratch)))

(defn triangles
"Return a sequence of all the Triangles which comprise a given
Geometry."
[#^Geometry geo]
(map (partial triangle geo) (range (.getTriangleCount (.getMesh geo)))))

(defn triangle-vertex-indices
"Get the triangle vertex indices of a given triangle from a given
mesh."
[#^Mesh mesh triangle-index]
(let [indices (int-array 3)]
(.getTriangle mesh triangle-index indices)
(vec indices)))

(defn vertex-UV-coord
"Get the UV-coordinates of the vertex named by vertex-index"
[#^Mesh mesh vertex-index]
(let [UV-buffer

(.getData
(.getBuffer
mesh
VertexBuffer$Type/TexCoord))]

48

Hundreds of hair-like elements provide a sense of touch

[(.get UV-buffer (* vertex-index 2))
(.get UV-buffer (+ 1 (* vertex-index 2)))]))

(defn pixel-triangle [#^Geometry geo image index]
(let [mesh (.getMesh geo)

width (.getWidth image)
height (.getHeight image)]

(vec (map (fn [[u v]] (vector (* width u) (* height v)))
(map (partial vertex-UV-coord mesh)

(triangle-vertex-indices mesh index))))))

(defn pixel-triangles
"The pixel-space triangles of the Geometry, in the same order as
(triangles geo)"

[#^Geometry geo image]
(let [height (.getHeight image)

width (.getWidth image)]
(map (partial pixel-triangle geo image)

(range (.getTriangleCount (.getMesh geo))))))

The A�ne Transform from one Triangle to Another

pixel-triangles gives us the mesh triangles expressed in pixel coordinates and triangles
gives us the mesh triangles expressed in world coordinates. The tactile-sensor-pro�le

gives the position of each feeler in pixel-space. In order to convert pixel-space coor-

dinates into world-space coordinates we need something that takes coordinates on the

surface of one triangle and gives the corresponding coordinates on the surface of another

triangle.

Triangles are a�ne, which means any triangle can be transformed into any other by

a combination of translation, scaling, and rotation. The a�ne transformation from one

triangle to another is readily computable if the triangle is expressed in terms of a 4x4
matrix. 

x1 x2 x3 nx

y1 y2 y3 ny

z1 z2 z3 nz

1 1 1 1


Here, the �rst three columns of the matrix are the vertices of the triangle. The last

column is the right-handed unit normal of the triangle.

With two triangles T1 and T2 each expressed as a matrix like above, the a�ne trans-

form from T1 to T2 is T2T
−1
1 .

49

http://mathworld.wolfram.com/AffineTransformation.html

Hundreds of hair-like elements provide a sense of touch

The clojure code below recapitulates the formulas above, using jMonkeyEngine’s

Matrix4f objects, which can describe any a�ne transformation.

Listing 18: Program to interpret triangles as a�ne transforms.

(defn triangle->matrix4f
"Converts the triangle into a 4x4 matrix: The first three columns
contain the vertices of the triangle; the last contains the unit
normal of the triangle. The bottom row is filled with 1s."
[#^Triangle t]
(let [mat (Matrix4f.)

[vert-1 vert-2 vert-3]
(mapv #(.get t %) (range 3))
unit-normal (do (.calculateNormal t)(.getNormal t))
vertices [vert-1 vert-2 vert-3 unit-normal]]

(dorun
(for [row (range 4) col (range 3)]
(do
(.set mat col row (.get (vertices row) col))
(.set mat 3 row 1)))) mat))

(defn triangles->affine-transform
"Returns the affine transformation that converts each vertex in the
first triangle into the corresponding vertex in the second
triangle."
[#^Triangle tri-1 #^Triangle tri-2]
(.mult
(triangle->matrix4f tri-2)
(.invert (triangle->matrix4f tri-1))))

Triangle Boundaries

For e�ciency’s sake I will divide the tactile-pro�le image into small squares which in-

scribe each pixel-triangle, then extract the points which lie inside the triangle and map

them to 3D-space using triangle-transform above. To do this I need a function, convex-bounds
which �nds the smallest box which inscribes a 2D triangle.

inside-triangle? determines whether a point is inside a triangle in 2D pixel-space.

Listing 19: Program to e�ciently determine point inclusion in a triangle.

(defn convex-bounds
"Returns the smallest square containing the given vertices, as a
vector of integers [left top width height]."
[verts]
(let [xs (map first verts)

50

Hundreds of hair-like elements provide a sense of touch

ys (map second verts)
x0 (Math/floor (apply min xs))
y0 (Math/floor (apply min ys))
x1 (Math/ceil (apply max xs))
y1 (Math/ceil (apply max ys))]

[x0 y0 (- x1 x0) (- y1 y0)]))

(defn same-side?
"Given the points p1 and p2 and the reference point ref, is point p
on the same side of the line that goes through p1 and p2 as ref is?"
[p1 p2 ref p]
(<=
0
(.dot
(.cross (.subtract p2 p1) (.subtract p p1))
(.cross (.subtract p2 p1) (.subtract ref p1)))))

(defn inside-triangle?
"Is the point inside the triangle?"
{:author "Dylan Holmes"}
[#^Triangle tri #^Vector3f p]
(let [[vert-1 vert-2 vert-3] [(.get1 tri) (.get2 tri) (.get3 tri)]]

(and
(same-side? vert-1 vert-2 vert-3 p)
(same-side? vert-2 vert-3 vert-1 p)
(same-side? vert-3 vert-1 vert-2 p))))

Feeler Coordinates

The triangle-related functions above make short work of calculating the positions and

orientations of each feeler in world-space.

Listing 20: Program to get the coordinates of “feelers ” in both world and UV-

coordinates.

(defn feeler-pixel-coords
"Returns the coordinates of the feelers in pixel space in lists, one
list for each triangle, ordered in the same way as (triangles) and
(pixel-triangles)."
[#^Geometry geo image]
(map
(fn [pixel-triangle]

(filter
(fn [coord]

(inside-triangle? (->triangle pixel-triangle)
(->vector3f coord)))

51

Hundreds of hair-like elements provide a sense of touch

(white-coordinates image (convex-bounds pixel-triangle))))
(pixel-triangles geo image)))

(defn feeler-world-coords
"Returns the coordinates of the feelers in world space in lists, one
list for each triangle, ordered in the same way as (triangles) and
(pixel-triangles)."

[#^Geometry geo image]
(let [transforms

(map #(triangles->affine-transform
(->triangle %1) (->triangle %2))

(pixel-triangles geo image)
(triangles geo))]

(map (fn [transform coords]
(map #(.mult transform (->vector3f %)) coords))

transforms (feeler-pixel-coords geo image))))

Listing 21: Program to get the position of the base and tip of each “feeler”

(defn feeler-origins
"The world space coordinates of the root of each feeler."
[#^Geometry geo image]
(reduce concat (feeler-world-coords geo image)))

(defn feeler-tips
"The world space coordinates of the tip of each feeler."
[#^Geometry geo image]
(let [world-coords (feeler-world-coords geo image)

normals
(map
(fn [triangle]
(.calculateNormal triangle)
(.clone (.getNormal triangle)))

(map ->triangle (triangles geo)))]

(mapcat (fn [origins normal]
(map #(.add % normal) origins))

world-coords normals)))

(defn touch-topology
[#^Geometry geo image]
(collapse (reduce concat (feeler-pixel-coords geo image))))

52

Hundreds of hair-like elements provide a sense of touch

Simulated Touch

Now that the functions to construct feelers are complete, touch-kernel generates func-

tions to be called from within a simulation that perform the necessary physics collisions

to collect tactile data, and touch! recursively applies it to every node in the creature.

Listing 22: E�cient program to transform a ray from one position to another.

(defn set-ray [#^Ray ray #^Matrix4f transform
#^Vector3f origin #^Vector3f tip]

;; Doing everything locally reduces garbage collection by enough to
;; be worth it.
(.mult transform origin (.getOrigin ray))
(.mult transform tip (.getDirection ray))
(.subtractLocal (.getDirection ray) (.getOrigin ray))
(.normalizeLocal (.getDirection ray)))

Listing 23: This is the core of touch in CORTEX each feeler follows the object it is

bound to, reporting any collisions that may happen.

(defn touch-kernel
"Constructs a function which will return tactile sensory data from
’geo when called from inside a running simulation"

[#^Geometry geo]
(if-let

[profile (tactile-sensor-profile geo)]
(let [ray-reference-origins (feeler-origins geo profile)

ray-reference-tips (feeler-tips geo profile)
ray-length (tactile-scale geo)
current-rays (map (fn [_] (Ray.)) ray-reference-origins)
topology (touch-topology geo profile)
correction (float (* ray-length -0.2))]

;; slight tolerance for very close collisions.
(dorun
(map (fn [origin tip]

(.addLocal origin (.mult (.subtract tip origin)
correction)))

ray-reference-origins ray-reference-tips))
(dorun (map #(.setLimit % ray-length) current-rays))
(fn [node]
(let [transform (.getWorldMatrix geo)]
(dorun
(map (fn [ray ref-origin ref-tip]

(set-ray ray transform ref-origin ref-tip))
current-rays ray-reference-origins

53

Hundreds of hair-like elements provide a sense of touch

ray-reference-tips))
(vector
topology
(vec
(for [ray current-rays]
(do
(let [results (CollisionResults.)]
(.collideWith node ray results)
(let [touch-objects

(filter #(not (= geo (.getGeometry %)))
results)

limit (.getLimit ray)]
[(if (empty? touch-objects)

limit
(let [response

(apply min (map #(.getDistance %)
touch-objects))]

(FastMath/clamp
(float
(if (> response limit) (float 0.0)

(+ response correction)))
(float 0.0)
limit)))

limit])))))))))))

Armed with the touch! function, CORTEX becomes capable of giving creatures a sense

of touch. A simple test is to create a cube that is out�tted with a uniform distribution of

touch sensors. It can feel the ground and any balls that it touches.

Listing 24: CORTEX interface for creating touch in a simulated creature.

(defn touch!
"Endow the creature with the sense of touch. Returns a sequence of
functions, one for each body part with a tactile-sensor-profile,
each of which when called returns sensory data for that body part."
[#^Node creature]
(filter
(comp not nil?)
(map touch-kernel

(filter #(isa? (class %) Geometry)
(node-seq creature)))))

The tactile-sensor-pro�le image for the touch cube is a simple cross with a uniform

distribution of touch sensors:

54

Hundreds of hair-like elements provide a sense of touch

Figure 20: The touch pro�le for the touch-cube. Each pure white pixel de�nes a

touch sensitive feeler.

Figure 21: The touch cube reacts to cannonballs. The black, red, and white cross on

the right is a visual display of the creature’s touch. White means that it is feeling

something strongly, black is not feeling anything, and gray is in-between. The cube

can feel both the �oor and the ball. Notice that when the ball causes the cube to

tip, that the bottom face can still feel part of the ground.

55

Proprioception provides knowledge of your own body’s position

2.11 Proprioception provides knowledge of your own body’s po-
sition

Close your eyes, and touch your nose with your right index �nger. How did you do it?

You could not see your hand, and neither your hand nor your nose could use the sense

of touch to guide the path of your hand. There are no sound cues, and Taste and Smell

certainly don’t provide any help. You know where your hand is without your other senses

because of Proprioception.

Humans can sometimes loose this sense through viral infections or damage to the

spinal cord or brain, and when they do, they loose the ability to control their own bodies

without looking directly at the parts they want to move. In The Man Who Mistook His

Wife for a Hat (Sacks 1998), a woman named Christina looses this sense and has to learn

how to move by carefully watching her arms and legs. She describes proprioception as

the "eyes of the body, the way the body sees itself".

Proprioception in humans is mediated by joint capsules, muscle spindles, and the

Golgi tendon organs. These measure the relative positions of each body part by moni-

toring muscle strain and length.

It’s clear that this is a vital sense for �uid, graceful movement. It’s also particularly

easy to implement in jMonkeyEngine.

My simulated proprioception calculates the relative angles of each joint from the rest

position de�ned in the blender �le. This simulates the muscle-spindles and joint capsules.

I will deal with Golgi tendon organs, which calculate muscle strain, in the next section.

Helper functions

absolute-angle calculates the angle between two vectors, relative to a third axis vector.

This angle is the number of radians you have to move counterclockwise around the axis

vector to get from the �rst to the second vector. It is not commutative like a normal

dot-product angle is.

The purpose of these functions is to build a system of angle measurement that is

biologically plausible.

Listing 25: Program to measure angles along a vector

(defn right-handed?
"true iff the three vectors form a right handed coordinate
system. The three vectors do not have to be normalized or
orthogonal."
[vec1 vec2 vec3]
(pos? (.dot (.cross vec1 vec2) vec3)))

56

http://en.wikipedia.org/wiki/The_Man_Who_Mistook_His_Wife_for_a_Hat
http://en.wikipedia.org/wiki/The_Man_Who_Mistook_His_Wife_for_a_Hat
http://en.wikipedia.org/wiki/Articular_capsule
http://en.wikipedia.org/wiki/Muscle_spindle
http://en.wikipedia.org/wiki/Golgi_tendon_organ

Proprioception provides knowledge of your own body’s position

(defn absolute-angle
"The angle between ’vec1 and ’vec2 around ’axis. In the range
[0 (* 2 Math/PI)]."

[vec1 vec2 axis]
(let [angle (.angleBetween vec1 vec2)]
(if (right-handed? vec1 vec2 axis)

angle (- (* 2 Math/PI) angle))))

Proprioception Kernel

Given a joint, proprioception-kernel produces a function that calculates the Euler

angles between the objects the joint connects. The only tricky part here is making the

angles relative to the joint’s initial “straightness”.

Listing 26: Program to return biologically reasonable proprioceptive data for each

joint.

(defn proprioception-kernel
"Returns a function which returns proprioceptive sensory data when
called inside a running simulation."
[#^Node parts #^Node joint]
(let [[obj-a obj-b] (joint-targets parts joint)

joint-rot (.getWorldRotation joint)
x0 (.mult joint-rot Vector3f/UNIT_X)
y0 (.mult joint-rot Vector3f/UNIT_Y)
z0 (.mult joint-rot Vector3f/UNIT_Z)]

(fn []
(let [rot-a (.clone (.getWorldRotation obj-a))

rot-b (.clone (.getWorldRotation obj-b))
x (.mult rot-a x0)
y (.mult rot-a y0)
z (.mult rot-a z0)

X (.mult rot-b x0)
Y (.mult rot-b y0)
Z (.mult rot-b z0)
heading (Math/atan2 (.dot X z) (.dot X x))
pitch (Math/atan2 (.dot X y) (.dot X x))

;; rotate x-vector back to origin
reverse
(doto (Quaternion.)
(.fromAngleAxis
(.angleBetween X x)
(let [cross (.normalize (.cross X x))]

57

Muscles contain both sensors and e�ectors

(if (= 0 (.length cross)) y cross))))
roll (absolute-angle (.mult reverse Y) y x)]

[heading pitch roll]))))

(defn proprioception!
"Endow the creature with the sense of proprioception. Returns a
sequence of functions, one for each child of the \"joints\" node in
the creature, which each report proprioceptive information about
that joint."
[#^Node creature]
;; extract the body’s joints
(let [senses (map (partial proprioception-kernel creature)

(joints creature))]
(fn []
(map #(%) senses))))

proprioception! maps proprioception-kernel across all the joints of the crea-

ture. It uses the same list of joints that joints uses. Proprioception is the easiest sense

to implement in CORTEX, and it will play a crucial role when e�ciently implementing

empathy.

Figure 22: In the upper right corner, the three proprioceptive angle measurements

are displayed. Red is yaw, Green is pitch, and White is roll.

2.12 Muscles contain both sensors and e�ectors

Surprisingly enough, terrestrial creatures only move by using torque applied about their

joints. There’s not a single straight line of force in the human body at all! (A straight line

of force would correspond to some sort of jet or rocket propulsion.)

In humans, muscles are composed of muscle �bers which can contract to exert force.

The muscle �bers which compose a muscle are partitioned into discrete groups which

58

Muscles contain both sensors and e�ectors

are each controlled by a single alpha motor neuron. A single alpha motor neuron might

control as little as three or as many as one thousand muscle �bers. When the alpha

motor neuron is engaged by the spinal cord, it activates all of the muscle �bers to which

it is attached. The spinal cord generally engages the alpha motor neurons which control

few muscle �bers before the motor neurons which control many muscle �bers. This

recruitment strategy allows for precise movements at low strength. The collection of

all motor neurons that control a muscle is called the motor pool. The brain essentially

says "activate 30% of the motor pool" and the spinal cord recruits motor neurons until

30% are activated. Since the distribution of power among motor neurons is unequal and

recruitment goes from weakest to strongest, the �rst 30% of the motor pool might be 5%

of the strength of the muscle.

My simulated muscles follow a similar design: Each muscle is de�ned by a 1-D array

of numbers (the "motor pool"). Each entry in the array represents a motor neuron which

controls a number of muscle �bers equal to the value of the entry. Each muscle has a

scalar strength factor which determines the total force the muscle can exert when all

motor neurons are activated. The e�ector function for a muscle takes a number to index

into the motor pool, and then "activates" all the motor neurons whose index is lower or

equal to the number. Each motor-neuron will apply force in proportion to its value in

the array. Lower values cause less force. The lower values can be put at the "beginning"

of the 1-D array to simulate the layout of actual human muscles, which are capable of

more precise movements when exerting less force. Or, the motor pool can simulate more

exotic recruitment strategies which do not correspond to human muscles.

This 1D array is de�ned in an image �le for ease of creation/visualization. Here is an

example muscle pro�le image.

Figure 23: A muscle pro�le image that describes the strengths of each motor neuron

in a muscle. White is weakest and dark red is strongest. This particular pattern has

weaker motor neurons at the beginning, just like human muscle.

Muscle meta-data

Listing 27: Program to deal with loading muscle data from a blender �le’s metadata.

(defn muscle-profile-image
"Get the muscle-profile image from the node’s blender meta-data."
[#^Node muscle]
(if-let [image (meta-data muscle "muscle")]

59

Muscles contain both sensors and e�ectors

(load-image image)))

(defn muscle-strength
"Return the strength of this muscle, or 1 if it is not defined."
[#^Node muscle]
(if-let [strength (meta-data muscle "strength")]
strength 1))

(defn motor-pool
"Return a vector where each entry is the strength of the \"motor
neuron\" at that part in the muscle."
[#^Node muscle]
(let [profile (muscle-profile-image muscle)]
(vec
(let [width (.getWidth profile)]
(for [x (range width)]
(- 255

(bit-and
0x0000FF
(.getRGB profile x 0))))))))

Of note here is motor-pool which interprets the muscle-pro�le image in a way that

allows me to use gradients between white and red, instead of shades of gray as I’ve been

using for all the other senses. This is purely an aesthetic touch.

Creating muscles

Listing 28: This is the core movement function in CORTEX, which implements mus-

cles that report on their activation.

(defn movement-kernel
"Returns a function which when called with a integer value inside a
running simulation will cause movement in the creature according
to the muscle’s position and strength profile. Each function
returns the amount of force applied / max force."
[#^Node creature #^Node muscle]
(let [target (closest-node creature muscle)

axis
(.mult (.getWorldRotation muscle) Vector3f/UNIT_Y)
strength (muscle-strength muscle)

pool (motor-pool muscle)
pool-integral (reductions + pool)
forces
(vec (map #(float (* strength (/ % (last pool-integral))))

60

CORTEX brings complex creatures to life!

pool-integral))
control (.getControl target RigidBodyControl)]

;;(println-repl (.getName target) axis)
(fn [n]

(let [pool-index (max 0 (min n (dec (count pool))))
force (forces pool-index)]

(.applyTorque control (.mult axis force))
(float (/ force strength))))))

(defn movement!
"Endow the creature with the power of movement. Returns a sequence
of functions, each of which accept an integer value and will
activate their corresponding muscle."

[#^Node creature]
(for [muscle (muscles creature)]
(movement-kernel creature muscle)))

movement-kernel creates a function that controls the movement of the nearest phys-

ical node to the muscle node. The muscle exerts a rotational force dependent on it’s ori-

entation to the object in the blender �le. The function returned by movement-kernel is

also a sense function: it returns the percent of the total muscle strength that is currently

being employed. This is analogous to muscle tension in humans and completes the sense

of proprioception begun in the last section.

2.13 CORTEX brings complex creatures to life!
The ultimate test of CORTEX is to create a creature with the full gamut of senses and put

it though its paces.

With all senses enabled, my right hand model looks like an intricate marionette hand

with several strings for each �nger:

With the hand fully rigged with senses, I can run it though a test that will test every-

thing.

61

CORTEX brings complex creatures to life!

Figure 24: View of the hand model with all sense nodes. You can see the joint,

muscle, ear, and eye nodes here.

62

CORTEX brings complex creatures to life!

Figure 25: An alternate view of the hand.

63

CORTEX brings complex creatures to life!

Figure 26: A full test of the hand with all senses. Note especially the interactions

the hand has with itself: it feels its own palm and �ngers, and when it curls its

�ngers, it sees them with its eye (which is located in the center of the palm. The

red block appears with a pure tone sound. The hand then uses its muscles to launch

the cube!
64

CORTEX enables many possibilities for further research

2.14 CORTEX enables many possibilities for further research

Often times, the hardest part of building a system involving creatures is dealing with

physics and graphics. CORTEX removes much of this initial di�culty and leaves researchers

free to directly pursue their ideas. I hope that even undergrads with a passing curiosity

about simulated touch or creature evolution will be able to use cortex for experimen-

tation. CORTEX is a completely simulated world, and far from being a disadvantage, its

simulated nature enables you to create senses and creatures that would be impossible to

make in the real world.

While not by any means a complete list, here are some paths CORTEX is well suited to

help you explore:

Empathy my empathy program leaves many areas for improvement, among which are

using vision to infer proprioception and looking up sensory experience with imag-

ined vision, touch, and sound.

Evolution Karl Sims created a rich environment for simulating the evolution of crea-

tures on a Connection Machine (Sims 1994). Today, this can be redone and ex-

panded with CORTEX on an ordinary computer.

Exotic senses Cortex enables many fascinating senses that are not possible to build in

the real world. For example, telekinesis is an interesting avenue to explore. You

can also make a “semantic” sense which looks up metadata tags on objects in the

environment the metadata tags might contain other sensory information.

Imagination via subworlds this would involve a creature with an e�ector which cre-

ates an entire new sub-simulation where the creature has direct control over place-

ment/creation of objects via simulated telekinesis. The creature observes this sub-

world through its normal senses and uses its observations to make predictions

about its top level world.

Simulated prescience step the simulation forward a few ticks, gather sensory data,

then supply this data for the creature as one of its actual senses. The cost of pre-

science is slowing the simulation down by a factor proportional to however far you

want the entities to see into the future. What happens when two evolved creatures

that can each see into the future �ght each other?

Swarm creatures Program a group of creatures that cooperate with each other. Because

the creatures would be simulated, you could investigate computationally complex

rules of behavior which still, from the group’s point of view, would happen in

65

CORTEX enables many possibilities for further research

real time. Interactions could be as simple as cellular organisms communicating via

�ashing lights, or as complex as humanoids completing social tasks, etc.

HACKER for writing muscle-control programs Presented with a low-level muscle con-

trol / sense API, generate higher level programs for accomplishing various stated

goals. Example goals might be "extend all your �ngers" or "move your hand into

the area with blue light" or "decrease the angle of this joint". It would be like Suss-

man’s HACKER, except it would operate with much more data in a more realistic

world. Start o� with "calisthenics" to develop subroutines over the motor control

API. The low level programming code might be a turning machine that could de-

velop programs to iterate over a "tape" where each entry in the tape could control

recruitment of the �bers in a muscle.

Sense fusion There is much work to be done on sense integration – building up a co-

herent picture of the world and the things in it. With CORTEX as a base, you can

explore concepts like self-organizing maps or cross modal clustering in ways that

have never before been tried.

Inverse kinematics experiments in sense guided motor control are easy given CORTEX’s

support – you can get right to the hard control problems without worrying about

physics or senses.

66

3. EMPATH: action recognition in a simulated worm

3 EMPATH: action recognition in a simulated worm

Here I develop a computational model of empathy, using CORTEX as a base. Empathy

in this context is the ability to observe another creature and infer what sorts of sensa-

tions that creature is feeling. My empathy algorithm involves multiple phases. First is

free-play, where the creature moves around and gains sensory experience. From this ex-

perience I construct a representation of the creature’s sensory state space, which I call

Φ-space. Using Φ-space, I construct an e�cient function which takes the limited data

that comes from observing another creature and enriches it with a full compliment of

imagined sensory data. I can then use the imagined sensory data to recognize what the

observed creature is doing and feeling, using straightforward embodied action predi-

cates. This is all demonstrated with using a simple worm-like creature, and recognizing

worm-actions based on limited data.

Figure 27: Here is the worm with which we will be working. It is composed of 5

segments. Each segment has a pair of extensor and �exor muscles. Each of the

worm’s four joints is a hinge joint which allows about 30 degrees of rotation to

either side. Each segment of the worm is touch-capable and has a uniform distri-

bution of touch sensors on each of its faces. Each joint has a proprioceptive sense to

detect relative positions. The worm segments are all the same except for the �rst

one, which has a much higher weight than the others to allow for easy manual

motor control.

67

Embodiment factors action recognition into manageable parts

Listing 29: Program for reading a worm from a blender �le and out�tting it with the

senses of proprioception, touch, and the ability to move, as speci�ed in the blender

�le.

(defn worm []
(let [model (load-blender-model "Models/worm/worm.blend")]
{:body (doto model (body!))
:touch (touch! model)
:proprioception (proprioception! model)
:muscles (movement! model)}))

3.1 Embodiment factors action recognition intomanageable parts
Using empathy, I divide the problem of action recognition into a recognition process

expressed in the language of a full compliment of senses, and an imaginative process

that generates full sensory data from partial sensory data. Splitting the action recognition

problem in this manner greatly reduces the total amount of work to recognize actions:

The imaginative process is mostly just matching previous experience, and the recognition

process gets to use all the senses to directly describe any action.

3.2 Action recognition is easy with a full gamut of senses
Embodied representations using multiple senses such as touch, proprioception, and mus-

cle tension turns out be exceedingly e�cient at describing body-centered actions. It is

the right language for the job. For example, it takes only around 5 lines of LISP code

to describe the action of curling using embodied primitives. It takes about 10 lines to

describe the seemingly complicated action of wiggling.

The following action predicates each take a stream of sensory experience, observe

however much of it they desire, and decide whether the worm is doing the action they

describe. curled? relies on proprioception, resting? relies on touch, wiggling? relies

on a Fourier analysis of muscle contraction, and grand-circle? relies on touch and

reuses curled? in its de�nition, showing how embodied predicates can be composed.

Listing 30: Program for detecting whether the worm is curled. This is the simplest

action predicate, because it only uses the last frame of sensory experience, and

only uses proprioceptive data. Even this simple predicate, however, is automati-

cally frame independent and ignores vermopomorphic
1

di�erences such as worm

textures and colors.

(defn curled?
"Is the worm curled up?"

68

Action recognition is easy with a full gamut of senses

[experiences]
(every?
(fn [[_ _ bend]]
(> (Math/sin bend) 0.64))

(:proprioception (peek experiences))))

Listing 31: Program for summarizing the touch information in a patch of skin.

(defn contact
"Determine how much contact a particular worm segment has with
other objects. Returns a value between 0 and 1, where 1 is full
contact and 0 is no contact."

[touch-region [coords contact :as touch]]
(-> (zipmap coords contact)

(select-keys touch-region)
(vals)
(#(map first %))
(average)
(* 10)
(- 1)
(Math/abs)))

Listing 32: Program for detecting whether the worm is at rest. This program uses

a summary of the tactile information from the underbelly of the worm, and is only

true if every segment is touching the �oor. Note that this function contains no

references to proprioception at all.

(def worm-segment-bottom (rect-region [8 15] [14 22]))

(defn resting?
"Is the worm resting on the ground?"
[experiences]
(every?
(fn [touch-data]
(< 0.9 (contact worm-segment-bottom touch-data)))

(:touch (peek experiences))))

Listing 33: Program for detecting whether the worm is curled up into a full circle.

Here the embodied approach begins to shine, as I am able to both use a previous

action predicate (curled?) as well as the direct tactile experience of the head and

tail.

1
Like anthropomorphic except for worms instead of humans.

69

Action recognition is easy with a full gamut of senses

(def worm-segment-bottom-tip (rect-region [15 15] [22 22]))

(def worm-segment-top-tip (rect-region [0 15] [7 22]))

(defn grand-circle?
"Does the worm form a majestic circle (one end touching the other)?"
[experiences]
(and (curled? experiences)

(let [worm-touch (:touch (peek experiences))
tail-touch (worm-touch 0)
head-touch (worm-touch 4)]

(and (< 0.55 (contact worm-segment-bottom-tip tail-touch))
(< 0.55 (contact worm-segment-top-tip head-touch))))))

Listing 34: Program for detecting whether the worm has been wiggling for the last

few frames. It uses a Fourier analysis of the muscle contractions of the worm’s

tail to determine wiggling. This is signi�cant because there is no particular frame

that clearly indicates that the worm is wiggling — only when multiple frames are

analyzed together is the wiggling revealed. De�ning wiggling this way also gives

the worm an opportunity to learn and recognize “frustrated wiggling”, where the

worm tries to wiggle but can’t. Frustrated wiggling is very visually di�erent from

actual wiggling, but this de�nition gives it to us for free.

(defn fft [nums]
(map
#(.getReal %)
(.transform
(FastFourierTransformer. DftNormalization/STANDARD)
(double-array nums) TransformType/FORWARD)))

(def indexed (partial map-indexed vector))

(defn max-indexed [s]
(first (sort-by (comp - second) (indexed s))))

(defn wiggling?
"Is the worm wiggling?"
[experiences]
(let [analysis-interval 0x40]
(when (> (count experiences) analysis-interval)
(let [a-flex 3

a-ex 2
muscle-activity
(map :muscle (vector:last-n experiences analysis-interval))
base-activity

70

Action recognition is easy with a full gamut of senses

(map #(- (% a-flex) (% a-ex)) muscle-activity)]
(= 2

(first
(max-indexed
(map #(Math/abs %)

(take 20 (fft base-activity))))))))))

With these action predicates, I can now recognize the actions of the worm while it is

moving under my control and I have access to all the worm’s senses.

Listing 35: Use the action predicates de�ned earlier to report on what the worm is

doing while in simulation.

(defn debug-experience
[experiences text]
(cond
(grand-circle? experiences) (.setText text "Grand Circle")
(curled? experiences) (.setText text "Curled")
(wiggling? experiences) (.setText text "Wiggling")
(resting? experiences) (.setText text "Resting")))

Figure 28: Using debug-experience, the body-centered predicates work together

to classify the behavior of the worm. the predicates are operating with access to

the worm’s full sensory data.

71

Φ-space describes the worm’s experiences

These action predicates satisfy the recognition requirement of an empathic recogni-

tion system. There is power in the simplicity of the action predicates. They describe their

actions without getting confused in visual details of the worm. Each one is independent

of position and rotation, but more than that, they are each independent of irrelevant vi-

sual details of the worm and the environment. They will work regardless of whether the

worm is a di�erent color or heavily textured, or if the environment has strange lighting.

Consider how the human act of jumping might be described with body-centered ac-

tion predicates: You might specify that jumping is mainly the feeling of your knees bend-

ing, your thigh muscles contracting, and your inner ear experiencing a certain sort of

back and forth acceleration. This representation is a very concrete description of jump-

ing, couched in terms of muscles and senses, but it also has the ability to describe almost

all kinds of jumping, a generality that you might think could only be achieved by a very

abstract description. The body centered jumping predicate does not have terms that con-

sider the color of a person’s skin or whether they are male or female, instead it gets right

to the meat of what jumping actually is.
Of course, the action predicates are not directly applicable to video data, which lacks

the advanced sensory information which they require!

The trick now is to make the action predicates work even when the sensory data on

which they depend is absent. If I can do that, then I will have gained much.

3.3 Φ-space describes the worm’s experiences

As a �rst step towards building empathy, I need to gather all of the worm’s experiences

during free play. I use a simple vector to store all the experiences.

Each element of the experience vector exists in the vast space of all possible worm-

experiences. Most of this vast space is actually unreachable due to physical constraints

of the worm’s body. For example, the worm’s segments are connected by hinge joints

that put a practical limit on the worm’s range of motions without limiting its degrees of

freedom. Some groupings of senses are impossible; the worm can not be bent into a circle

so that its ends are touching and at the same time not also experience the sensation of

touching itself.

As the worm moves around during free play and its experience vector grows larger,

the vector begins to de�ne a subspace which is all the sensations the worm can practically

experience during normal operation. I call this subspace Φ-space, short for physical-

space. The experience vector de�nes a path through Φ-space. This path has interesting

properties that all derive from physical embodiment. The proprioceptive components

of the path vary smoothly, because in order for the worm to move from one position

to another, it must pass through the intermediate positions. The path invariably forms

72

Empathy is the process of building paths in Φ-space

loops as common actions are repeated. Finally and most importantly, proprioception

alone actually gives very strong inference about the other senses. For example, when the

worm is proprioceptively �at over several frames, you can infer that it is touching the

ground and that its muscles are not active, because if the muscles were active, the worm

would be moving and would not remain perfectly �at. In order to stay �at, the worm has

to be touching the ground, or it would again be moving out of the �at position due to

gravity. If the worm is positioned in such a way that it interacts with itself, then it is very

likely to be feeling the same tactile feelings as the last time it was in that position, because

it has the same body as then. As you observe multiple frames of proprioceptive data, you

can become increasingly con�dent about the exact activations of the worm’s muscles,

because it generally takes a unique combination of muscle contractions to transform the

worm’s body along a speci�c path through Φ-space.

The worm’s total life experience is a long looping path through Φ-space. I will now

introduce simple way of taking that experience path and building a function that can infer

complete sensory experience given only a stream of proprioceptive data. This empathy
function will provide a bridge to use the body centered action predicates on video-like

streams of information.

3.4 Empathy is the process of building paths in Φ-space

Here is the core of a basic empathy algorithm, starting with an experience vector:

An experience-index is an index into the grand experience vector that de�nes the

worm’s life. It is a time-stamp for each set of sensations the worm has experienced.

First, group the experience-indices into bins according to the similarity of their pro-

prioceptive data. I organize my bins into a 3 level hierarchy. The smallest bins have an

approximate size of 0.001 radians in all proprioceptive dimensions. Each higher level is

10x bigger than the level below it.

The bins serve as a hashing function for proprioceptive data. Given a single piece of

proprioceptive experience, the bins allow us to rapidly �nd all other similar experience-

indices of past experience that had a very similar proprioceptive con�guration. When

looking up a proprioceptive experience, if the smallest bin does not match any previous

experience, then successively larger bins are used until a match is found or we reach the

largest bin.

Given a sequence of proprioceptive input, I use the bins to generate a set of similar

experiences for each input using the tiered proprioceptive bins.

Finally, to infer sensory data, I select the longest consecutive chain of experiences

that threads through the sets of similar experiences, starting with the current moment as

a root and going backwards. Consecutive experience means that the experiences appear

73

Empathy is the process of building paths in Φ-space

next to each other in the experience vector.

A stream of proprioceptive input might be:

[flat, flat, flat, flat, flat, flat, lift-head]

The worm’s previous experience of lying on the ground and lifting its head generates

possible interpretations for each frame (the numbers are experience-indices):

[flat, flat, flat, flat, flat, flat, flat, lift-head]
1 1 1 1 1 1 1 4
2 2 2 2 2 2 2
3 3 3 3 3 3 3
7 7 7 7 7 7 7
8 8 8 8 8 8 8
9 9 9 9 9 9 9

These interpretations suggest a new path through phi space:

[flat, flat, flat, flat, flat, flat, flat, lift-head]
6 7 8 9 1 2 3 4

The new path through Φ-space is synthesized from two actual paths that the creature

has experienced: the "1-2-3-4" chain and the "6-7-8-9" chain. The "1-2-3-4" chain is nec-

essary because it ends with the worm lifting its head. It originated from a short training

session where the worm rested on the �oor for a brief while and then raised its head.

The "6-7-8-9" chain is part of a longer chain of inactivity where the worm simply rested

on the �oor without moving. It is preferred over a "1-2-3" chain (which also describes

inactivity) because it is longer. The main ideas again:

• Imagined Φ-space paths are synthesized by looping and mixing previous experi-

ences.

• Longer experience paths (less edits) are preferred.

• The present is more important than the past — more recent events take precedence

in interpretation.

This algorithm has three advantages:

1. It’s simple

74

Empathy is the process of building paths in Φ-space

2. It’s very fast – retrieving possible interpretations takes constant time. Tracing

through chains of interpretations takes time proportional to the average number

of experiences in a proprioceptive bin. Redundant experiences in Φ-space can be

merged to save computation.

3. It protects from wrong interpretations of transient ambiguous proprioceptive data.

For example, if the worm is �at for just an instant, this �atness will not be inter-

preted as implying that the worm has its muscles relaxed, since the �atness is part

of a longer chain which includes a distinct pattern of muscle activation. Markov

chains or other memoryless statistical models that operate on individual frames

may very well make this mistake.

Listing 36: Program to convert an experience vector into a proprioceptively binned

lookup function.

(defn bin [digits]
(fn [angles]

(->> angles
(flatten)
(map (juxt #(Math/sin %) #(Math/cos %)))
(flatten)
(mapv #(Math/round (* % (Math/pow 10 (dec digits))))))))

(defn gen-phi-scan
"Nearest-neighbors with binning. Only returns a result if
the proprioceptive data is within 10% of a previously recorded
result in all dimensions."

[phi-space]
(let [bin-keys (map bin [3 2 1])

bin-maps
(map (fn [bin-key]

(group-by
(comp bin-key :proprioception phi-space)
(range (count phi-space)))) bin-keys)

lookups (map (fn [bin-key bin-map]
(fn [proprio] (bin-map (bin-key proprio))))

bin-keys bin-maps)]
(fn lookup [proprio-data]

(set (some #(% proprio-data) lookups)))))

longest-thread infers sensory data by stitching together pieces from previous ex-

perience. It prefers longer chains of previous experience to shorter ones. For exam-

ple, during training the worm might rest on the ground for one second before it per-

forms its exercises. If during recognition the worm rests on the ground for �ve seconds,

75

Empathy is the process of building paths in Φ-space

Figure 29: longest-thread �nds the longest path of consecutive past experiences

to explain proprioceptive worm data from previous data. Here, the �lm strip rep-

resents the creature’s previous experience. Sort sequences of memories are spliced

together to match the proprioceptive data. Their carry the other senses along with

them.

longest-thread will accommodate this �ve second rest period by looping the one sec-

ond rest chain �ve times.

longest-thread takes time proportional to the average number of entries in a pro-

prioceptive bin, because for each element in the starting bin it performs a series of set

lookups in the preceding bins. If the total history is limited, then this takes time pro-

portional to a only a constant multiple of the number of entries in the starting bin. This

analysis also applies, even if the action requires multiple longest chains – it’s still the av-

erage number of entries in a proprioceptive bin times the desired chain length. Because

longest-thread is so e�cient and simple, I can interpret worm-actions in real time.

Listing 37: Program to calculate empathy by tracing though Φ-space and �nding

the longest (ie. most coherent) interpretation of the data.

(defn longest-thread
"Find the longest thread from phi-index-sets. The index sets should
be ordered from most recent to least recent."
[phi-index-sets]
(loop [result ’()

[thread-bases & remaining :as phi-index-sets] phi-index-sets]

76

Empathy is the process of building paths in Φ-space

(if (empty? phi-index-sets)
(vec result)
(let [threads

(for [thread-base thread-bases]
(loop [thread (list thread-base)

remaining remaining]
(let [next-index (dec (first thread))]

(cond (empty? remaining) thread
(contains? (first remaining) next-index)
(recur
(cons next-index thread) (rest remaining))

:else thread))))
longest-thread
(reduce (fn [thread-a thread-b]

(if (> (count thread-a) (count thread-b))
thread-a thread-b))

’(nil)
threads)]

(recur (concat longest-thread result)
(drop (count longest-thread) phi-index-sets))))))

There is one �nal piece, which is to replace missing sensory data with a best-guess

estimate. While I could �ll in missing data by using a gradient over the closest known

sensory data points, averages can be misleading. It is certainly possible to create an im-

possible sensory state by averaging two possible sensory states. For example, consider

moving your hand in an arc over your head. If for some reason you only have the ini-

tial and �nal positions of this movement in your Φ-space, averaging them together will

produce the proprioceptive sensation of having your hand inside your head, which is

physically impossible to ever experience (barring motor adaption illusions). Therefore I

simply replicate the most recent sensory experience to �ll in the gaps.

Listing 38: Fill in blanks in sensory experience by replicating the most recent ex-

perience.

(defn infer-nils
"Replace nils with the next available non-nil element in the
sequence, or barring that, 0."

[s]
(loop [i (dec (count s))

v (transient s)]
(if (zero? i) (persistent! v)

(if-let [cur (v i)]
(if (get v (dec i) 0)
(recur (dec i) v)

77

EMPATH recognizes actions e�ciently

(recur (dec i) (assoc! v (dec i) cur)))
(recur i (assoc! v i 0))))))

3.5 EMPATH recognizes actions e�ciently
To use EMPATH with the worm, I �rst need to gather a set of experiences from the worm

that includes the actions I want to recognize. The generate-phi-space program (list-

ing 39 runs the worm through a series of exercises and gathers those experiences into a

vector. The do-all-the-things program is a routine expressed in a simple muscle con-

traction script language for automated worm control. It causes the worm to rest, curl,

and wiggle over about 700 frames (approx. 11 seconds).

Listing 39: Program to gather the worm’s experiences into a vector for further pro-

cessing. The motor-control-program line uses a motor control script that causes

the worm to execute a series of “exercises” that include all the action predicates.

(def do-all-the-things
(concat
curl-script
[[300 :d-ex 40]
[320 :d-ex 0]]
(shift-script 280 (take 16 wiggle-script))))

(defn generate-phi-space []
(let [experiences (atom [])]
(run-world
(apply-map
worm-world
(merge
(worm-world-defaults)
{:end-frame 700
:motor-control
(motor-control-program worm-muscle-labels do-all-the-things)
:experiences experiences})))

@experiences))

Listing 40: Use longest-thread and a Φ-space generated from a short exercise

routine to interpret actions during free play.

(defn init []
(def phi-space (generate-phi-space))
(def phi-scan (gen-phi-scan phi-space)))

78

EMPATH recognizes actions e�ciently

(defn empathy-demonstration []
(let [proprio (atom ())]
(fn
[experiences text]
(let [phi-indices (phi-scan (:proprioception (peek experiences)))]
(swap! proprio (partial cons phi-indices))
(let [exp-thread (longest-thread (take 300 @proprio))

empathy (mapv phi-space (infer-nils exp-thread))]
(println-repl (vector:last-n exp-thread 22))
(cond
(grand-circle? empathy) (.setText text "Grand Circle")
(curled? empathy) (.setText text "Curled")
(wiggling? empathy) (.setText text "Wiggling")
(resting? empathy) (.setText text "Resting")
:else (.setText text "Unknown")))))))

(defn empathy-experiment [record]
(.start (worm-world :experience-watch (debug-experience-phi)

:record record :worm worm*)))

These programs create a test for the empathy system. First, the worm’s Φ-space is

generated from a simple motor script. Then the worm is re-created in an environment

almost exactly identical to the testing environment for the action-predicates, with one

major di�erence : the only sensory information available to the system is propriocep-

tion. From just the proprioception data and Φ-space, longest-thread synthesizes a

complete record the last 300 sensory experiences of the worm. These synthesized expe-

riences are fed directly into the action predicates grand-circle?, curled?, wiggling?,

and resting? from before and their output is printed to the screen at each frame.

The result of running empathy-experiment is that the system is generally able to

interpret worm actions using the action-predicates on simulated sensory data just as

well as with actual data. Figure 30 was generated using empathy-experiment:

79

EMPATH recognizes actions e�ciently

Figure 30: From only proprioceptive data, EMPATH was able to infer the complete

sensory experience and classify four poses (The last panel shows a composite image

of wiggling, a dynamic pose.)

One way to measure the performance of EMPATH is to compare the suitability of the

imagined sense experience to trigger the same action predicates as the real sensory ex-

perience.

Listing 41: Determine how closely empathy approximates actual sensory data.

(def worm-action-label
(juxt grand-circle? curled? wiggling?))

(defn compare-empathy-with-baseline [matches]
(let [proprio (atom ())]
(fn
[experiences text]
(let [phi-indices (phi-scan (:proprioception (peek experiences)))]
(swap! proprio (partial cons phi-indices))
(let [exp-thread (longest-thread (take 300 @proprio))

empathy (mapv phi-space (infer-nils exp-thread))
experience-matches-empathy
(= (worm-action-label experiences)

(worm-action-label empathy))]
(println-repl experience-matches-empathy)
(swap! matches #(conj % experience-matches-empathy)))))))

80

Digression: Learning touch sensor layout through free play

(defn accuracy [v]
(float (/ (count (filter true? v)) (count v))))

(defn test-empathy-accuracy []
(let [res (atom [])]
(run-world
(worm-world :experience-watch

(compare-empathy-with-baseline res)
:worm worm*))

(accuracy @res)))

Running test-empathy-accuracy using the very short exercise program de�ned in

listing 39, and then doing a similar pattern of activity manually yields an accuracy of

around 73%. This is based on very limited worm experience. By training the worm for

longer, the accuracy dramatically improves.

Listing 42: Program to generate Φ-space using manual training.

(defn init-interactive []
(def phi-space
(let [experiences (atom [])]

(run-world
(apply-map
worm-world
(merge
(worm-world-defaults)
{:experiences experiences})))

@experiences))
(def phi-scan (gen-phi-scan phi-space)))

After about 1 minute of manual training, I was able to achieve 95% accuracy on man-

ual testing of the worm using init-interactive and test-empathy-accuracy. The

majority of errors are near the boundaries of transitioning from one type of action to

another. During these transitions the exact label for the action is more open to inter-

pretation, and disagreement between empathy and experience is essentially irrelevant at

this point, giving a practical identi�cation accuracy of even higher than 95%. When I

watch this system myself, I generally see no errors in action identi�cation.

3.6 Digression: Learning touch sensor layout through free play
In the previous section I showed how to compute actions in terms of body-centered pred-

icates, but some of those predicates relied on the average touch activation of pre-de�ned

regions of the worm’s skin. What if, instead of receiving touch pre-grouped into the six

81

Digression: Learning touch sensor layout through free play

faces of each worm segment, the true topology of the worm’s skin was unknown? This

is more similar to how a nerve �ber bundle might be arranged inside an animal. While

two �bers that are close in a nerve bundle might correspond to two touch sensors that

are close together on the skin, the process of taking a complicated surface and forcing it

into essentially a circle requires that some regions of skin that are close together in the

animal end up far apart in the nerve bundle.

In this section I show how to automatically learn the skin-topology of a worm seg-

ment by free exploration. As the worm rolls around on the �oor, large sections of its

surface get activated. If the worm has stopped moving, then whatever region of skin that

is touching the �oor is probably an important region, and should be recorded.

Listing 43: Program to detect whether the worm is in a resting state with one face

touching the �oor.

(def full-contact [(float 0.0) (float 0.1)])

(defn pure-touch?
"This is worm specific code to determine if a large region of touch
sensors is either all on or all off."
[[coords touch :as touch-data]]
(= (set (map first touch)) (set full-contact)))

After collecting these important regions, there will many nearly similar touch regions.

While for some purposes the subtle di�erences between these regions will be important,

for my purposes I collapse them into mostly non-overlapping sets using remove-similar
in listing 44

Listing 44: Program to take a list of sets of points and “collapse them” so that the

remaining sets in the list are signi�cantly di�erent from each other. Prefer smaller

sets to larger ones.

(defn remove-similar
[coll]
(loop [result () coll (sort-by (comp - count) coll)]
(if (empty? coll) result

(let [[x & xs] coll
c (count x)]

(if (some
(fn [other-set]
(let [oc (count other-set)]
(< (- (count (union other-set x)) c) (* oc 0.1))))

xs)
(recur result xs)
(recur (cons x result) xs))))))

82

Digression: Learning touch sensor layout through free play

Actually running this simulation is easy given CORTEX’s facilities.

Listing 45: Collect experiences while the worm moves around. Filter the touch

sensations by stable ones, collapse similar ones together, and report the regions

learned.

(defn learn-touch-regions []
(let [experiences (atom [])

world (apply-map
worm-world
(assoc (worm-segment-defaults)
:experiences experiences))]

(run-world world)
(->>
@experiences
(drop 175)
;; access the single segment’s touch data
(map (comp first :touch))
;; only deal with "pure" touch data to determine surfaces
(filter pure-touch?)
;; associate coordinates with touch values
(map (partial apply zipmap))
;; select those regions where contact is being made
(map (partial group-by second))
(map #(get % full-contact))
(map (partial map first))
;; remove redundant/subset regions
(map set)
remove-similar)))

(defn learn-and-view-touch-regions []
(map view-touch-region

(learn-touch-regions)))

The only thing remaining to de�ne is the particular motion the worm must take. I

accomplish this with a simple motor control program.

Listing 46: Motor control program for making the worm roll on the ground. This

could also be replaced with random motion.

(defn touch-kinesthetics []
[[170 :lift-1 40]
[190 :lift-1 19]
[206 :lift-1 0]

[400 :lift-2 40]

83

Digression: Learning touch sensor layout through free play

[410 :lift-2 0]

[570 :lift-2 40]
[590 :lift-2 21]
[606 :lift-2 0]

[800 :lift-1 30]
[809 :lift-1 0]

[900 :roll-2 40]
[905 :roll-2 20]
[910 :roll-2 0]

[1000 :roll-2 40]
[1005 :roll-2 20]
[1010 :roll-2 0]

[1100 :roll-2 40]
[1105 :roll-2 20]
[1110 :roll-2 0]
])

Figure 31: The small worm rolls around on the �oor, driven by the motor control

program in listing 31.

While simple, learn-touch-regions exploits regularities in both the worm’s physi-

ology and the worm’s environment to correctly deduce that the worm has six sides. Note

that learn-touch-regions would work just as well even if the worm’s touch sense data

84

Digression: Learning touch sensor layout through free play

Figure 32: After completing its adventures, the worm now knows how its touch

sensors are arranged along its skin. Each of these six rectangles are touch sen-

sory patterns that were deemed important by learn-touch-regions. Each white

square in the rectangles above is a cluster of “related" touch nodes as determined

by the system. The worm has correctly discovered that it has six faces, and has

partitioned its sensory map into these six faces.

were completely scrambled. The cross shape is just for convenience. This example justi-

�es the use of pre-de�ned touch regions in EMPATH.

85

Recognizing an object using embodied representation

3.7 Recognizing an object using embodied representation
At the beginning of the thesis, I suggested that we might recognize the chair in Figure 2

by imagining ourselves in the position of the man and realizing that he must be sitting

on something in order to maintain that position. Here, I present a brief elaboration on

how to this might be done.

First, I need the feeling of leaning or resting on some other object that is not the �oor.

This feeling is easy to describe using an embodied representation.

Listing 47: Program describing the sense of leaning or resting on something. This

involves a relaxed posture, the feeling of touching something, and a period of sta-

bility where the worm does not move.

(defn draped?
"Is the worm:
-- not flat (the floor is not a ’chair’)
-- supported (not using its muscles to hold its position)
-- stable (not changing its position)
-- touching something (must register contact)"

[experiences]
(let [b2-hash (bin 2)

touch (:touch (peek experiences))
total-contact
(reduce
+
(map #(contact all-touch-coordinates %)

(rest touch)))]
(println total-contact)
(and (not (resting? experiences))

(every?
zero?
(-> experiences

(vector:last-n 25)
(#(map :muscle %))
(flatten)))

(-> experiences
(vector:last-n 20)
(#(map (comp b2-hash flatten :proprioception) %))
(set)
(count) (= 1))

(< 0.03 total-contact))))

Though this is a simple example, using the draped? predicate to detect the cube

has interesting advantages. The draped? predicate describes the cube not in terms of

properties that the cube has, but instead in terms of how the worm interacts with it

86

Recognizing an object using embodied representation

Figure 33: The draped? predicate detects the presence of the cube whenever the

worm interacts with it. The details of the cube are irrelevant; only the way it

in�uences the worm’s body matters.

physically. This means that the cube can still be detected even if it is not visible, as long

as its in�uence on the worm’s body is visible.

This system will also see the virtual cube created by a “mimeworm", which uses its

muscles in a very controlled way to mimic the appearance of leaning on a cube. The

system will anticipate that there is an actual invisible cube that provides support!

This makes me wonder about the psychology of actual mimes. Suppose for a mo-

ment that people have something analogous to Φ-space and that one of the ways that

they �nd objects in a scene is by their relation to other people’s bodies. Suppose that a

person watches a person miming an invisible wall. For a person with no experience with

miming, their Φ-space will only have entries that describe the scene with the sensation

of their hands touching a wall. This sensation of touch will create a strong impression

of a wall, even though the wall would have to be invisible. A person with experience in

miming however, will have entries in their Φ-space that describe the wall-miming posi-

tion without a sense of touch. It will not seem to such as person that an invisible wall

is present, but merely that the mime is holding out their hands in a special way. Thus,

the theory that humans use something like Φ-space weakly predicts that learning how

to mime should break the power of miming illusions. Most optical illusions still work no

matter how much you know about them, so this proposal would be quite interesting to

test, as it predicts a non-standard result!

87

Recognizing an object using embodied representation

Figure 34: Can you see the thing that this person is leaning on? What properties

does it have, other than how it makes the man’s elbow and shoulder feel? I wonder

if people who can actually maintain this pose easily still see the support?

88

4. Contributions

4 Contributions
The big idea behind this thesis is a new way to represent and recognize physical actions,

which I call empathic representation. Actions are represented as predicates which have

access to the totality of a creature’s sensory abilities. To recognize the physical actions

of another creature similar to yourself, you imagine what they would feel by examining

the position of their body and relating it to your own previous experience.

Empathic representation of physical actions is robust and general. Because the rep-

resentation is body-centered, it avoids baking in a particular viewpoint like you might

get from learning from example videos. Because empathic representation relies on all

of a creature’s senses, it can describe exactly what an action feels like without getting

caught up in irrelevant details such as visual appearance. I think it is important that a

correct description of jumping (for example) should not include irrelevant details such as

the color of a person’s clothes or skin; empathic representation can get right to the heart

of what jumping is by describing it in terms of touch, muscle contractions, and a brief

feeling of weightlessness. Empathic representation is very low-level in that it describes

actions using concrete sensory data with little abstraction, but it has the generality of

much more abstract representations!

Another important contribution of this thesis is the development of the CORTEX sys-

tem, a complete environment for creating simulated creatures. You have seen how to

implement �ve senses: touch, proprioception, hearing, vision, and muscle tension. You

have seen how to create new creatures using blender, a 3D modeling tool.

As a minor digression, you also saw how I used CORTEX to enable a tiny worm to

discover the topology of its skin simply by rolling on the ground. You also saw how to

detect objects using only embodied predicates.

In conclusion, for this thesis I:

• Developed the idea of embodied representation, which describes actions that a

creature can do in terms of �rst-person sensory data.

• Developed a method of empathic action recognition which uses previous embodied

experience and embodied representation of actions to greatly constrain the possible

interpretations of an action.

• Created EMPATH, a program which uses empathic action recognition to recognize

physical actions in a simple model involving segmented worm-like creatures.

• Created CORTEX, a comprehensive platform for embodied AI experiments. It is the

base on which EMPATH is built.

89

1. Appendix: CORTEX User Guide

1 Appendix: CORTEX User Guide
Those who write a thesis should endeavor to make their code not only accessible, but

actually usable, as a way to pay back the community that made the thesis possible in

the �rst place. This thesis would not be possible without Free Software such as jMon-

keyEngine3, Blender, clojure, emacs, �mpeg, and many other tools. That is why I have

included this user guide, in the hope that someone else might �nd CORTEX useful.

1.1 Obtaining CORTEX

You can get cortex from its mercurial repository at http://hg.bortreb.com/cortex.

You may also download CORTEX releases at http://aurellem.org/cortex/releases/.

As a condition of making this thesis, I have also provided Professor Winston the CORTEX
source, and he knows how to run the demos and get started. You may also email me at

cortex@aurellem.org and I may help where I can.

1.2 Running CORTEX

CORTEX comes with README and INSTALL �les that will guide you through installation

and running the test suite. In particular you should look at test cortex.test which

contains test suites that run through all senses and multiple creatures.

1.3 Creating creatures
Creatures are created using Blender, a free 3D modeling program. You will need Blender

version 2.6 when using the CORTEX included in this thesis. You create a CORTEX creature

in a similar manner to modeling anything in Blender, except that you also create several

trees of empty nodes which de�ne the creature’s senses.

Mass

To give an object mass in CORTEX, add a “mass” metadata label to the object with the

mass in jMonkeyEngine units. Note that setting the mass to 0 causes the object to be

immovable.

Joints

Joints are created by creating an empty node named joints and then creating any num-

ber of empty child nodes to represent your creature’s joints. The joint will automatically

90

http://hg.bortreb.com/cortex
http://aurellem.org/cortex/releases/

Creating creatures

connect the closest two physical objects. It will help to set the empty node’s display mode

to “Arrows” so that you can clearly see the direction of the axes.

Joint nodes should have the following metadata under the “joint” label:

;; ONE of the following, under the label "joint":
{:type :point}

;; OR

{:type :hinge
:limit [<limit-low> <limit-high>]
:axis (Vector3f. <x> <y> <z>)}
;;(:axis defaults to (Vector3f. 1 0 0) if not provided for hinge joints)

;; OR

{:type :cone
:limit-xz <lim-xz>
:limit-xy <lim-xy>
:twist <lim-twist>} ;(use XZY rotation mode in blender!)

Eyes

Eyes are created by creating an empty node named eyes and then creating any number

of empty child nodes to represent your creature’s eyes.

Eye nodes should have the following metadata under the “eye” label:

{:red <red-retina-definition>
:blue <blue-retina-definition>
:green <green-retina-definition>
:all <all-retina-definition>
(<0xrrggbb> <custom-retina-image>)...
}

Any of the color channels may be omitted. You may also include your own color

selectors, and in fact :red is equivalent to 0xFF0000 and so forth. The eye will be placed

at the same position as the empty node and will bind to the neatest physical object. The

eye will point outward from the X-axis of the node, and “up” will be in the direction of

the X-axis of the node. It will help to set the empty node’s display mode to “Arrows” so

that you can clearly see the direction of the axes.

Each retina �le should contain white pixels wherever you want to be sensitive to your

chosen color. If you want the entire �eld of view, specify :all of 0xFFFFFF and a retinal

map that is entirely white.

91

Creating creatures

Here is a sample retinal map:

Figure 35: An example retinal pro�le image. White pixels are photo-sensitive ele-

ments. The distribution of white pixels is denser in the middle and falls o� at the

edges and is inspired by the human retina.

Hearing

Ears are created by creating an empty node named ears and then creating any number

of empty child nodes to represent your creature’s ears.

Ear nodes do not require any metadata.

The ear will bind to and follow the closest physical node.

Touch

Touch is handled similarly to mass. To make a particular object touch sensitive, add

metadata of the following form under the object’s “touch” metadata �eld:

<touch-UV-map-file-name>

You may also include an optional “scale” metadata number to specify the length of

the touch feelers. The default is 0.1, and this is generally su�cient.

The touch UV should contain white pixels for each touch sensor.

Here is an example touch-uv map that approximates a human �nger, and its corre-

sponding model.

92

Creating creatures

Figure 36: This is the tactile-sensor-pro�le for the upper segment of a �ngertip. It

de�nes regions of high touch sensitivity (where there are many white pixels) and

regions of low sensitivity (where white pixels are sparse).

Figure 37: The �ngertip UV-image form above applied to a simple model of a �n-

gertip.

Proprioception

Proprioception is tied to each joint node – nothing special must be done in a blender

model to enable proprioception other than creating joint nodes.

93

CORTEX API

Muscles

Muscles are created by creating an empty node named muscles and then creating any

number of empty child nodes to represent your creature’s muscles.

Muscle nodes should have the following metadata under the “muscle” label:

<muscle-profile-file-name>

Muscles should also have a “strength” metadata entry describing the muscle’s total

strength at full activation.

Muscle pro�les are simple images that contain the relative amount of muscle power

in each simulated alpha motor neuron. The width of the image is the total size of the

motor pool, and the redness of each neuron is the relative power of that motor pool.

While the pro�le image can have any dimensions, only the �rst line of pixels is used

to de�ne the muscle. Here is a sample muscle pro�le image that de�nes a human-like

muscle.

Figure 38: A muscle pro�le image that describes the strengths of each motor neuron

in a muscle. White is weakest and dark red is strongest. This particular pattern has

weaker motor neurons at the beginning, just like human muscle.

Muscles twist the nearest physical object about the muscle node’s Z-axis. I recom-

mend using the “Single Arrow” display mode for muscles and using the right hand rule to

determine which way the muscle will twist. To make a segment that can twist in multiple

directions, create multiple, di�erently aligned muscles.

1.4 CORTEX API
These are the some functions exposed by CORTEX for creating worlds and simulating crea-

tures. These are in addition to jMonkeyEngine3’s extensive library, which is documented

elsewhere.

Simulation

(world root-node key-map setup-fn update-fn) create a simulation.

root-node a com.jme3.scene.Node object which contains all of the objects that

should be in the simulation.

94

CORTEX API

key-map a map from strings describing keys to functions that should be executed

whenever that key is pressed. the functions should take a SimpleApplication

object and a boolean value. The SimpleApplication is the current simulation

that is running, and the boolean is true if the key is being pressed, and false

if it is being released. As an example,

{"key-j" (fn [game value] (if value (println "key j pressed")))}

is a valid key-map which will cause the simulation to print a message when-

ever the ’j’ key on the keyboard is pressed.

setup-fn a function that takes a SimpleApplication object. It is called once

when initializing the simulation. Use it to create things like lights, change

the gravity, initialize debug nodes, etc.

update-fn this function takes a SimpleApplication object and a �oat and is

called every frame of the simulation. The �oat tells how many seconds is has

been since the last frame was rendered, according to whatever clock jme is

currently using. The default is to use IsoTimer which will result in this value

always being the same.

(position-camera world position rotation) set the position of the simulation’s

main camera.

(enable-debug world) turn on debug wireframes for each simulated object.

(set-gravity world gravity) set the gravity of a running simulation.

(box length width height & {options}) create a box in the simulation. Options

is a hash map specifying texture, mass, etc. Possible options are :name, :color,

:mass, :friction, :texture, :material, :position, :rotation, :shape, and

:physical?.

(sphere radius & {options}) create a sphere in the simulation. Options are the same

as in box.

(load-blender-model file-name) create a node structure representing the model de-

scribed in a blender �le.

(light-up-everything world) distribute a standard compliment of lights throughout

the simulation. Should be adequate for most purposes.

(node-seq node) return a recursive list of the node’s children.

95

CORTEX API

(nodify name children) construct a node given a node-name and desired children.

(add-element world element) add an object to a running world simulation.

(set-accuracy world accuracy) change the accuracy of the world’s physics simula-

tor.

(asset-manager) get an AssetManager, a jMonkeyEngine construct that is useful for

loading textures and is required for smooth interaction with jMonkeyEngine li-

brary functions.

(load-bullet) unpack native libraries and initialize the bullet physics subsystem. This

function is required before other world building functions are called.

Creature Manipulation / Import

(body! creature) give the creature a physical body.

(vision! creature) give the creature a sense of vision. Returns a list of functions

which will each, when called during a simulation, return the vision data for the

channel of one of the eyes. The functions are ordered depending on the alphabetical

order of the names of the eye nodes in the blender �le. The data returned by the

functions is a vector containing the eye’s topology, a vector of coordinates, and the

eye’s data, a vector of RGB values �ltered by the eye’s sensitivity.

(hearing! creature) give the creature a sense of hearing. Returns a list of functions,

one for each ear, that when called will return a frame’s worth of hearing data for

that ear. The functions are ordered depending on the alphabetical order of the

names of the ear nodes in the blender �le. The data returned by the functions is an

array of PCM (pulse code modulated) wav data.

(touch! creature) give the creature a sense of touch. Returns a single function that

must be called with the root node of the world, and which will return a vector

of touch-data one entry for each touch sensitive component, each entry of which

contains a topology that speci�es the distribution of touch sensors, and the data,

which is a vector of [activation, length] pairs for each touch hair.

(proprioception! creature) give the creature the sense of proprioception. Returns

a list of functions, one for each joint, that when called during a running simulation

will report the [heading, pitch, roll] of the joint.

96

CORTEX API

(movement! creature) give the creature the power of movement. Creates a list of func-

tions, one for each muscle, that when called with an integer, will set the recruitment

of that muscle to that integer, and will report the current power being exerted by

the muscle. Order of muscles is determined by the alphabetical sort order of the

names of the muscle nodes.

Visualization/Debug

(view-vision) create a function that when called with a list of visual data returned

from the functions made by vision!, will display that visual data on the screen.

(view-hearing) same as view-vision but for hearing.

(view-touch) same as view-vision but for touch.

(view-proprioception) same as view-vision but for proprioception.

(view-movement) same as view-vision but for muscles.

(view anything) view is a polymorphic function that allows you to inspect almost any-

thing you could reasonably expect to be able to “see” in CORTEX.

(text anything) text is a polymorphic function that allows you to convert practically

anything into a text string.

(println-repl anything) print messages to clojure’s repl instead of the simulation’s

terminal window.

(mega-import-jme3) for experimenting at the REPL. This function will import all jMon-

keyEngine3 classes for immediate use.

(display-dilated-time world timer) Shows the time as it is �owing in the simula-

tion on a HUD display.

TODO – add a paper about detecting biological motion from only a few dots.

97

98

Bibliography

Bear et al. (2006). Neuroscience: Exploring the Brain. 3rd Edition. Lippincott Williams &

Wilkins. isbn: 9780781760034.

This is the introductory textbook to 9.01. It provides a good introduction to all major human senses.

Blender (2013). http://www.blender.org/.

All complicated creatures in CORTEX are described using Blender’s extensive 3D modeling capabilities.

Blender is a very sophisticated 3D modeling environment and has been used to create a short movie

called Sintel http://www.sintel.org/.

Brooks, Rodney A. (1991). “Intelligence Without Representation”. In: Arti�cial Intelli-
gence 47.1-3. Available at : http://people.csail.mit.edu/brooks/papers/
representation.pdf, pp. 139–159.

Presents an argument that simulation will not be enough to develop arti�cial intelligence, and that we

must rely on the real world and robots if we are to build truly robust systems. While CORTEX embraces

simulation because of Time, this paper remains a compelling argument for why the entire enterprise

might not even be a good idea.

Coen, Michael Harlan (2006). “Multimodal dynamics : self-supervised learning in percep-

tual and motor systems”. Available at: http://hdl.handle.net/1721.1/34022.

PhD thesis. MIT.

This thesis shows how to use multiple senses to mutually bootstrap o� of each other and achieve

clustering results that no sense could be able to achieve alone. Cross-modal clustering becomes more

powerful the more senses it has, and is ideal to implement in an environment such as CORTEX’s.

Harvey, Christopher D. et al. “Intracellular dynamics of hippocampal place cells during

99

http://www.blender.org/
http://www.sintel.org/
http://people.csail.mit.edu/brooks/papers/representation.pdf
http://people.csail.mit.edu/brooks/papers/representation.pdf
http://hdl.handle.net/1721.1/34022

virtual navigation”. In: Nature 461. Available at : http://papers.cnl.salk.edu/
PDFs/IntracelllularDynamicsofVirtualPlaceCells2011- 4178.pdf, pp. 941–

946.

Researchers at Princeton created a special Quake II level that simulated a maze, and added an interface

where a mouse could run on top of a ball in various directions to move the character in the simulated

maze. They measured hippocampal activity during this exercise to try and tease out the method in

which spatial data was stored in that area of the brain. I �nd this promising because it shows that

simulated worlds are still clear enough for a simple rat to navigate — they don’t just have meaning

from our own highly advanced imaginations. I want to see if a rat can reasonably grow up if it lives

its entire live hooked up to the game!

jMonkeyEngine3 (2013). http://hub.jmonkeyengine.org/.

This is the video game engine on which CORTEX is based.

Ke, Yan, R. Sukthankar, and M. Hebert (2005). “E�cient visual event detection using vol-

umetric features”. In: Computer Vision, 2005. ICCV 2005. Tenth IEEE International Con-
ference. Vol. 1. http://www.intel-research.net/Publications/Pittsburgh/
092620050705_320.pdf, 166–173 Vol. 1.

This is an example of using frame-dependent methods to detect actions in video. I consider this to be

the wrong language for describing actions, because it has no way to completely describe even a simple

action like “curling” form all points of view.

Larson, Stephen David (2003). “Intrinsic representation : bootstrapping symbols from ex-

perience”. Available at: http://hdl.handle.net/1721.1/28462. MA thesis. MIT.

This is an example of a thesis that I think could be improved with CORTEX. Larson uses a simple blocks

world simulator to explore using self-organizing maps to bootstrap symbols just from exploration with

a simulated arm and colored blocks.

Sacks, Oliver (1998). The Man Who Mistook His Wife For A Hat: And Other Clinical Tales.
Simon and Schuster. isbn: 9780330700580.

This book describes exotic cases where the human mind goes wrong. The section on proprioception is

particularly relevant to this thesis, and one of the best explanations of how important proprioception

100

http://papers.cnl.salk.edu/PDFs/Intracelllular Dynamics of Virtual Place Cells 2011-4178.pdf
http://papers.cnl.salk.edu/PDFs/Intracelllular Dynamics of Virtual Place Cells 2011-4178.pdf
http://hub.jmonkeyengine.org/
http://www.intel-research.net/Publications/Pittsburgh/092620050705_320.pdf
http://www.intel-research.net/Publications/Pittsburgh/092620050705_320.pdf
http://hdl.handle.net/1721.1/28462

is, though the eyes of someone who has lost the sense.

Sims, Karl (1994). “Evolving Virtual Creatures”. In: Computer Graphics (Siggraph ’94 Pro-
ceedings). Available as: http://www.karlsims.com/papers/siggraph94.pdf,

pp. 15–22.

Karl Sims uses a simulated virtual environment similar to CORTEX to study the evolution of a set of

creatures as they develop to perform various tasks such as swimming or competing for a ball. His code

only ran on the Connection Machine (CM-5), which sadly doesn’t exist anymore. CORTEX presents an

opportunity to continue this line of research.

Sussman, Gerald J. (1973). “A Computational Model of Skill Acquisition”. Available at:

http://hdl.handle.net/1721.1/6894. PhD thesis. MIT.

Sussman creates a program called HACKER, which operates in a blocks world environment and learns to

debug programs to build things with blocks and control its own body. This sort of approach to problem

solving is begging to be implemented in CORTEX’s rich world. Will program debugging still work well

with many more senses and a more complicated environment?

Turing, Alan M. (1950). “Computing machinery and intelligence”. In: Mind. Available as:

http://www.csee.umbc.edu/courses/471/papers/turing.pdf, pp. 433–460.

The original paper that inspired the Turing test. It’s important because in it Turing states that we don’t

have to care about the “hand” part of “mind and hand”, using the example of Helen Keller as motiva-

tion. I think that this is a mistake, and that embodiment is critical to intelligence.

Winston, Patrick Henry (2011). “The Strong Story Hypothesis and the Directed Percep-

tion Hypothesis”. In: Technical Report FS-11-01, Papers from the AAAI Fall Symposium.

Ed. by Pat Langley. Available as: http://hdl.handle.net/1721.1/67693. Menlo

Park, CA: AAAI Press, pp. 345–352.

Discusses an idea called the directed perception hypothesis, which argues that much of our intelligence

resides in our senses themselves, and our ability to direct their resources on imagined problems. This

has had the greatest in�uence on CORTEX.

— (2012). “The Next 50 Years: a Personal View”. In: Biologically Inspired Cognitive Ar-
chitectures 1. Available as : http://groups.csail.mit.edu/genesis/papers/

101

http://www.karlsims.com/papers/siggraph94.pdf
http://hdl.handle.net/1721.1/6894
http://www.csee.umbc.edu/courses/471/papers/turing.pdf
http://hdl.handle.net/1721.1/67693
http://groups.csail.mit.edu/genesis/papers/2012bica-phw
http://groups.csail.mit.edu/genesis/papers/2012bica-phw

2012bica-phw, pp. 92–99.

Great summary of historical attempts at AI, and more thoughts on how directed perception and

mimicry as in EMPATH might play an important role in intelligence.

102

http://groups.csail.mit.edu/genesis/papers/2012bica-phw
http://groups.csail.mit.edu/genesis/papers/2012bica-phw

	Empathy & Embodiment: problem solving strategies
	The problem: recognizing actions is hard!
	A step forward: the sensorimotor-centered approach
	EMPATH recognizes actions using empathy
	EMPATH is built on CORTEX, a creature builder.

	Designing CORTEX
	Building in simulation versus reality
	Simulated time enables rapid prototyping & simple programs
	All sense organs are two-dimensional surfaces
	Video game engines provide ready-made physics and shading
	CORTEX is based on jMonkeyEngine3
	CORTEX uses Blender to create creature models
	Bodies are composed of segments connected by joints
	Sight reuses standard video game components…
	…but hearing must be built from scratch
	Hundreds of hair-like elements provide a sense of touch
	Proprioception provides knowledge of your own body's position
	Muscles contain both sensors and effectors
	CORTEX brings complex creatures to life!
	CORTEX enables many possibilities for further research

	EMPATH: action recognition in a simulated worm
	Embodiment factors action recognition into manageable parts
	Action recognition is easy with a full gamut of senses
	-space describes the worm's experiences
	Empathy is the process of building paths in -space
	EMPATH recognizes actions efficiently
	Digression: Learning touch sensor layout through free play
	Recognizing an object using embodied representation

	Contributions
	Appendix: CORTEX User Guide
	Obtaining CORTEX
	Running CORTEX
	Creating creatures
	CORTEX API

